
National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 126

Website: www.npajournals.org

REVOLUTIONIZING MACHINE LEARNING THROUGH

BLOCKCHAIN: AN OPTIMISTIC PERSPECTIVE

Dinesh Yadav

M.Tech, Student WCTM

Vishali Sharma

Assistant Professor, WCTM

ABSTRACT

The convergence of blockchain technology with machine learning has garnered notable

attention, spurred by the vision of decentralized, secure, and transparent AI services. Within

this landscape, we present Chain learn (Blockchain-Powered Optimistic Machine Learning),

a novel methodology that empowers blockchain frameworks to perform AI model inference.

Chain learn employs an interactive fraud-proof protocol, reminiscent of optimistic rollup

systems, to ensure decentralized and verifiable consensus for machine learning services,

thereby enhancing trust and transparency. In contrast to zkML (Zero-Knowledge Machine

Learning), Chain learn offers cost-effective and highly efficient ML services with minimal

participation requirements. Notably, Chain learn facilitates the execution of extensive language

models, such as 7B-LLaMA, on standard PCs without GPUs, substantially broadening

accessibility. Through the amalgamation of blockchain and AI capabilities via Chain learn, we

embark on a transformative journey towards accessible, secure, and efficient on-chain

machine learning.

Keywords: Blockchain, Machine Learning, Fraud Proof, Rollup.

1. INTRODUCTION

In the dynamic landscape of digital advancement, the fusion of Artificial Intelligence (AI)

and blockchain technology signifies a transformative shift in how we engage with and

leverage information. AI, known for its advanced data analysis and decision- making

abilities, and blockchain, a decentralized ledger celebrated for its security and transparency,

have united to pioneer novel avenues in the digital domain. As distinct forces with unique

capabilities, the convergence of AI and blockchain is redefining the boundaries of digital

possibility. This convergence has introduced the concept of "Onchain AI," a cutting-edge

paradigm prepared to provide decentralized, safe, and effective AI services directly within the

blockchain network. However, a prevalent challenge within the realm of "Onchain AI" is the

impracticality of executing AI computations directly on the blockchain. For example, a

seemingly simple task like matrix multiplication of 1000 × 1000 integers would incur over 3

billion gas costs, far surpassing the current gas limit imposed by Ethereum. As a result, many

of these applications opt for off-chain computations on centralized servers, only transferring

the outcomes onto the blockchain. While this approach may yield functional outputs, it

inherently compromises decentralization. This compromise not only introduces significant

security concerns but also undermines the fundamental principles of trust and transparency

that blockchain technology seeks to promote. An alternative approach involves harnessing

Zero- Knowledge Machine Learning (zkML), representing a groundbreaking paradigm in

merging machine learning and blockchain technologies. zkML's utilization of zk- SNARKs

(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) has played a crucial

role in safeguarding sensitive model parameters and user data throughout the training and

inference phases. This not only addresses privacy

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 127

Website: www.npajournals.org

concerns but also alleviates the computational strain on the blockchain network, positioning

zkML as a promising solution for decentralized machine learning applications. While zkML

offers undeniable advantages in bolstering privacy and security within machine learning on

the blockchain, it's vital to recognize its inherent limitations. One of the most notable

challenges lies in the substantial cost associated with proof generation in zkML.

The process necessitates significant computational resources, leading to prolonged generation

times and extensive memory usage. Consequently, zkML is most suitable for relatively

modest models, as its inefficiency becomes evident when handling larger and more intricate

models. For instance, zkML would require over 1000 times the memory and computational

resources for ZK proof generation. As a result, zkML may prove impractical for expansive AI

applications necessitating the handling of large-scale datasets and complex model parameters.

In response to the limitations of zkML, we explore the utilization of fraud proof to validate the

accuracy of ML outcomes on the blockchain, as opposed to relying on zero-knowledge proofs

(ZKPs), also known as validity proofs. Fraud proofs are a common feature in blockchain

systems, particularly within rollup systems, which belong to the broader category of

optimistic systems. Prominent examples of rollup systems utilizing Arbitrum and Optimism

as fraud evidence. In a system employing fraud proof, there's an optimistic assumption that

each proposed result is valid by default. However, in cases where there's a suspicion of invalid

results, the system introduces a challenge period during which participants can challenge the

submitter. The fraud proof is generated through an interactive pinpoint protocol,

demonstrating that the provided result is erroneous. The arbitration process is designed to

validate a fraud proof with minimal computational steps, ensuring that the on-chain cost

remains exceedingly low. Encouraging system design as a basis, we provide Chainlearn:

Optimistic Machine Learning on the blockchain1. Diverging from the approach of zkML,

which relies on zero- knowledge proofs, Chainlearn adopts a fraud-proof system to

guarantee the correctness of ML results. Submitters can run machine learning (ML)

algorithms in their own environment and then publish the results straight to the blockchain

using the Chainlearn platform. This approach maintains an optimistic assumption that each

proposed result is inherently valid. During the challenge process, validators will check the

correctness of these submitted results. If the results are invalid, he will start the dispute game

(bisection protocol) with the submitter and tries to disprove the claim by pinpointing one

concrete erroneous step.

2. DESIGN PRINCIPLES

The design principles underlying ChainLearn are outlined as follows:

1. Deterministic ML Execution: To ensure consistency and determinism in ML

execution, ChainLearn employs fixed-point arithmetic and software- based floating-

point libraries. This approach guarantees that the ML execution process can be

represented by a deterministic state transition function, mitigating variability

stemming from randomness and floating- point computation.

2. Separate Execution from Proving: ChainLearn utilizes a dual-target compilation

approach, compiling the same source code twice. One compilation is optimized for

native execution, leveraging multithreaded CPUs and GPUs for enhanced speed. The

other compilation targets fraud- proof VM instructions for use in the fraud-proof

protocol. This strategy ensures swift execution while maintaining machine-

independent code for proving.

3. Optimistic Machine Learning with Interactive Fraud Proofs: Adopting interactive

fraud proof mechanisms, ChainLearn employs a process that progressively resolves

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 128

Website: www.npajournals.org

disputes to a single instruction level, ultimately resolving base-case discrepancies

using on-chain fraud-proof VMs.

4. Optimizing ML Fraud Proof with Multi-Phase Protocol: Traditional fraud-proof

systems, as prevalent in optimistic rollup systems, often require cross-compilation of

entire computations into fraud-proof VM instructions, leading to inefficient execution

and substantial memory consumption. ChainLearn introduces a novel multi-phase

protocol featuring semi-native execution and lazy loading. This approach significantly

accelerates the fraud-proof process while minimizing memory overhead.

3. ARCHITECTURE

ChainLearn relies on a fraud-proof mechanism to verify the accuracy of machine learning

outcomes on the blockchain. This fraud-proof mechanism within ChainLearn comprises three

essential elements:

1. Fraud-Proof Virtual Machine (FPVM): FPVM can track any instruction step of a

stateless program along with its inputs and validate it on the layer 1 blockchain (L1).

2. Machine Learning Engine: This highly efficient engine is tailored to handle both native

execution and fraud-proof scenarios. It ensures fast and precise execution of machine

learning tasks while maintaining result consistency and determinism.

3. Interactive Dispute Resolution: The dispute resolution process in ChainLearn breaks

down disputes to single instructions and resolves them using on-chain FPVM.

4. WORKFLOW:

On-chain verification is crucial in ChainLearn. Verifiers, also known as challengers,

scrutinize these outcomes. In case of disputes, the bisection protocol is activated to pinpoint

and rectify any identified errors. The workflow in ChainLearn unfolds as follows:

1. The requester initiates an ML service task.

2. The submitter executes the ML service task and records the result on-chain.

3. Verifiers (challengers) validate the results. If deemed incorrect, a verifier initiates the

dispute game (bisection protocol) with the server to disprove the claim by identifying

specific erroneous steps.

4. Smart contract arbitration resolves the disputed step, offering a conclusive resolution to

the dispute.

5. After a specified "challenge period," the results are confirmed.

Both the server (submitter) and the verifier (challenger) are required to stake in the system.

Providing incorrect results results in a loss of stake. Thus, if all parties follow their

incentives, only valid results are committed. Consequently, in most cases, the server

(submitter) provides correct results, and verifiers (challengers) validate them, minimizing the

occurrence of the dispute game. After the defined "challenge period," the results are

confirmed.

5. FRAUD PROOF VIRTUAL MACHINE

We've developed a Fraud Proof Virtual Machine (FPVM) for executing off-chain and

handling on-chain arbitration. We ensure that the off-chain VM is equivalent to the on-chain

VM implemented in a smart contract. Essentially, the FPVM operates as a state transition

function where each operation, termed as a Step, executes a single instruction. Given an input

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 129

Website: www.npajournals.org

state 𝑆𝑝𝑟𝑒 with instructions encoded within it, the FPVM, acting as a state transition function

denoted as (·), generates a new state 𝑆𝑝𝑜𝑠𝑡 , represented as 𝑉𝑀(𝑆𝑝𝑟𝑒) →𝑆𝑝𝑜𝑠𝑡 . As a result,

an ordered set of VM states makes up the trace of a program run by the FPVM, which shows

the results of running a machine learning program on the FPVM.

The execution trace 𝑇 is a sequence (𝑆0, 𝑆1, 𝑆2, · · · , 𝑆𝑛), where each 𝑆𝑖 represents a VM

state, and 𝑆𝑖 = 𝑉𝑀(𝑆𝑖−1), ∀𝑖 ∈ [1, 𝑛]. Every execution trace has a unique initial state 𝑆0,

determined by the ML model and input.

Management of the VM state is facilitated by a Merkle tree, where only the Merkle root is

uploaded to the on-chain smart contract, representing the VM state. The memory layout in the

FPVM comprises various areas, including "program code," "input," "output," "oracle key,"

"oracle value," and "model," as depicted in figure below. The machine learning program

resides in the "program" field, the input for the ML model is stored in the "input" field, and

the ML model itself is situated in the "model" field. The output of chainlearn is placed in the

"output" field upon completion of the ML program execution. Furthermore, the fraud-proof

system has a key-value oracle that the FPVM uses to access outside data as it changes states.

The oracle key and value are stored in the "oracle key" and "oracle value" fields, respectively.

Furthermore, the FPVM memory is structured as a Merkle tree with a fixed depth of 27

levels, with leaf values comprising 32 bytes each. This structure covers the full 32-bit address

space, where each leaf contains the memory data. The Merkle root of the tree reflects the

effects of memory writes in the FPVM, enabling representation of each field in the FPVM

memory as a Merkle subtree root.

6. MACHINE LEARNING ENGINE

Within ChainLearn, we've developed a highly efficient machine learning engine to

accommodate both native execution and fraud-proof scenarios. This engine not only

facilitates rapid and precise execution of machine learning tasks but also ensures the

consistency and determinism of results. This aspect is especially vital during dispute

resolution, as the machine learning engine can reliably produce a valid output and verify

disputes in a stateless manner, thereby bolstering the dependability of the entire system.

7. SEPARATE EXECUTION FROM PROVING

Following the design principle of "Separate Execution from Proving," we have designed a

highly efficient machine learning engine for chainLearn. This engine offers two types of

implementations: one optimized for native execution, prioritizing speed, and utilizing multi-

threaded CPUs and GPUs for acceleration; the other compiled into a fraud-proof program for

FPVM. This dual-target approach ensures swift execution while maintaining the integrity of

the proving process, which relies on machine-independent code. Consider the example of

matrix multiplication within the machine learning engine, as depicted in code below. During

native execution, GPU calculation (using CUDA) is employed for acceleration, as illustrated

in code below. However, because CUDA calculator compatibility is not supported, the

machine learning engine is compiled into machine-independent FPVM instructions for the

proof step. Both implementations guarantee consistent execution results across different

scenarios.

// a,b,c are GPU device pointers to matrix void GpuMatrixMultiplication(int *a, int *b, int *c,

int m, int n, int k) { int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x *

blockDim.x + threadIdx.x; int sum = 0; for(int i = 0; i < n; i++) {sum += a[row * n + i] * b[i *

k + col];} c[row * k + col] = sum; The process of matrix multiplication within the machine

learning engine, utilizing GPU acceleration for native execution

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 130

Website: www.npajournals.org

In our current implementation, we've prioritized the efficiency of AI model computation

within the FPVM. To achieve this, we've developed a lightweight machine learning engine

tailored specifically for this purpose, rather than relying on popular ML frameworks like

TensorFlow or PyTorch. Additionally, we provide a script capable of converting models from

TensorFlow and PyTorch to this lightweight library. With this script, models trained on

TensorFlow or PyTorch can be converted to the ChainLearn model format. Consistency and

determinism are crucial aspects addressed in our implementation. Randomness and

unpredictability in floating-point calculations are the two main causes of inconsistencies in

machine learning outcomes.

To mitigate randomness, it's common practice to fix the random seed in the random number

generator, as computer-generated randomness is essentially pseudo-random. Addressing

inconsistencies in floating-point computations is more complex Variations in execution

results may arise from floating-point number properties during native DNN computations,

particularly across multiple hardware platforms. Rounding mistakes can lead to non-identical

results in parallel computations involving floating-point numbers, such as (𝑎 𝑏) 𝑐 vs 𝑎 (𝑏 𝑐).

Additionally, variables like as operating system, compiler version, and programming

language can further affect how floating-point numbers are computed, which exacerbates

inconsistent ML results.

To address these challenges and ensure the consistency of ChainLearn, we employ two key

approaches:

1. Fixed-Point Arithmetic: We adopt fixed-point arithmetic, also known as

quantization technology. By employing this method, we can represent and execute

calculations with fixed precision instead of floating-point integers.

By doing so, we mitigate the effects of floating-point rounding errors, resulting in

more reliable and consistent results. It's important to note that using fixed-point

arithmetic may lead to a slight loss of accuracy in DNN models. This tradeoff

between execution performance and model accuracy is an essential consideration when

implementing such precision techniques.

2. Software-Based Floating-Point Libraries (softfloat): We utilize software- based

floating-point libraries (softfloat) designed to operate consistently across different

platforms. These libraries guarantee determinism and cross- platform consistency of

the ML results, independent of the underlying software or hardware configurations.

By integrating fixed-point arithmetic and software-based floating-point libraries

(softfloat), we establish a robust foundation for achieving consistent and reliable ML

results within the ChainLearn framework.

8. LOCATING THE DISPUTED POINT:

At the outset, the submitter and verifier agree on the initial state 𝑆0 but disagree on the final

state 𝑆𝑛 ≠ 𝑆𝑛'. The objective of the protocol, depicted in Figure 5, is to pinpoint a specific

VM𝑘 within a sequence of VM instructions executed within the context of the initial VM state

𝑆0 (with 𝑛 such instructions in total), where 𝑆𝑘−1 ≠

𝑆𝑘−1 but 𝑆𝑘 = 𝑆𝑘'.

The dispute game unfolds in a sequence of rounds. At the start of each round, the submitter

and verifier agree on a starting VM state 𝑆𝑖 and disagree on the ending state 𝑆𝑖+𝑗 for some 𝑗 >

1. At first, i = 0 and j = 𝑛.

. Subsequently, the challenger must claim the state 𝑆𝑚 at the midpoint of the VM state, where

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 131

Website: www.npajournals.org

𝑚 = 𝑖 + ⌊𝑗/2⌋. Then, the submitter confirms or disagrees with the challenger's midpoint state

𝑆𝑚.

Two scenarios can unfold:

1. If the submitter agrees with the challenger's midpoint state, a smaller dispute is

identified, and the protocol proceeds with the next round, adjusting 𝑖 and 𝑗
accordingly.

2. If the submitter disagrees with the challenger's midpoint state, another smaller dispute

is identified, and the protocol proceeds to the next round.

In both cases, the length of the dispute is halved, and the procedure is repeated until 𝑗 = 1.

The efficiency of the dispute game is noteworthy. In terms of time complexity, both the

verifier and submitter require only ⌈log 𝑛⌉ rounds of challenge-response to converge on the

same value of 𝑘, where 𝑆𝑘−1 ≠ 𝑆𝑘−1 but 𝑆𝑘

= 𝑆𝑘'. A timeout penalty-equipped challenge-response mechanism helps to achieve this

synchronization.

Subsequently, the state 𝑆𝑘−1, along with auxiliary data, is forwarded to a smart contract for

arbitration.

9. ONCHAIN ARBITRATION

For on-chain arbitration, the submitter and verifier will send (VMI𝑘, S𝑘−1, S𝑘) to the contract

for arbitration. The on-chain VM will take S𝑘−1 as input and conduct a one-step execution to

output the correct S. Because the on-chain virtual machine (VM) only performs a single

instruction, the amount of data (witness) that must be retrieved is a mere 0(1).

In on-chain arbitration, the witness comprises a partial expansion of the Merkle tree

representing the before state 𝑆𝑘−1. The on-chain VM uses this partially expanded state tree to

read the next instruction, emulate the instruction execution, and then compute the Merkle root

hash of the resulting state. Notably, the one-step on-chain VM execution always requires only

(1) computation and memory consumption, ensuring that on-chain arbitration can be

conducted using a feasible amount of Ethereum gas.

The challenger wins if they are able to present a legitimate one-step evidence at the on-chain

arbitration.

. Otherwise, the submitter wins the challenge.

10. MULTI-PHASE DISPUTE GAME

10.1 LIMITATIONS OF ONE-PHASE DISPUTE GAME

With the design principle of "Separate Execution from Proving," we can achieve high

performance in the optimistic scenario where the submitter consistently provides correct

results. However, to safeguard against malicious behavior in the pessimistic scenario, we still

require generating a fraud-proof for Chainlearn. In chainlearn’s fraud-proof protocol, we

cross-compile the ML computation into fraud-proof VM instructions and then initiate the

dispute game to identify the disputed step. However, this approach of cross-compiling the

entire ML computation into fraud-proof VM instructions presents significant limitations:

1. Low Execution Efficiency: The one-phase dispute game suffers from a critical

drawback: for proving, all computations must be executed within the FPVM, thereby

preventing us from harnessing the full potential of GPU/TPU acceleration or parallel

processing. This constraint thus seriously compromises the effectiveness of offering

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 132

Website: www.npajournals.org

fraud-proofing for large-scale model inference, and it is also consistent with the

existing restriction of the referred delegation of the computation (RDoC) protocol.

2. Restricted Memory in Fraud-Proof VM: The MIPS VM, for instance, can only

accommodate up to 4 GB of memory. The fraud-proof VM has limited memory

capacity.

Due to this limitation, we cannot directly load a large model into the fraud-proof VM. For

instance, the size of a 7B-llama model in float64 is around 26GB, exceeding the memory

capacity of the MIPS FPVM.

10.2 OVERVIEW OF MULTI-PHASE PROTOCOL

To overcome the constraints of the one-phase protocol and ensure that chainlearn can

generate fraud-proof with performance comparable to the native environment, we introduce a

multi-phase protocol. The multi-phase dispute game offers the following features to

effectively address the aforementioned limitations:

1. Semi-Native Execution: By using a multi-phase architecture, we reduce the amount of

processing required in the virtual machine (VM) until the last stage, which is similar to

a single-phase protocol.

2. During earlier phases, we have the flexibility to execute computations leading to state

transitions in the native environment, leveraging parallel processing capabilities in

CPU, GPU, or even TPU. By reducing reliance on the VM, we significantly decrease

overhead, resulting in a notable improvement in chainlearn’s execution performance,

almost matching that of the native environment.

3. Lazy Loading Design: To optimize memory usage and VM performance, we

implement a lazy loading technique. Instead of loading all data into the VM memory

at once, we only load keys identifying each data item. When the VM needs to access a

specific data item, it retrieves it from an external source using the key and loads it into

memory. Once the data item is no longer required, it is swapped out of memory to free

up space for other data items. This approach allows us to handle large datasets without

exceeding memory capacity or compromising VM efficiency.

4. Figure below illustrates a verification game comprising two phases (k = 2). Phase- 2

procedures are similar to those of a single-phase verification game in that every

change in state is attributed to a single VM micro-instruction that modifies the VM

state.

5. Phase-1 state transitions are equivalent to a "Large Instruction" consisting of several

micro-instructions that alter the context of processing.

6. . Initially, the submitter and challenger engage in the dispute game during Phase-1

using a bisection protocol to pinpoint the dispute step within a "large instruction." This

step is then forwarded to Phase-2. Phase-2 operates similarly to the single- phase

dispute game. The bisection protocol in Phase-2 aids in identifying the dispute step

within a VM micro-instruction. Subsequently, this step is sent to the arbitration

contract on the blockchain.

10.3 STATE TRANSITION TO NEXT PHASE:

To maintain the integrity and security of the transition to the next phase, we utilize the

Merkle tree. Illustrated in Figure 7, this process entails extracting a Merkle sub- tree

reconstruction, ensuring the smooth continuation of the dispute game process. As an

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 133

Website: www.npajournals.org

example, let's look at the state transition in the two-phase protocol.

In Phase-1, after the submitter and challenger have identified the dispute step on a "large

instruction", denoted as 𝑆𝑖−1 ≠ 𝑆𝑖, we proceed to construct a Merkle tree on the state data

𝑆𝑖−1 to obtain the Merkle tree root 𝑟𝑜(𝑆𝑖−1). Next, we initialize the initial state in the next

phase, denoted as 𝑆𝑘+1, using this Merkle root.

Specifically, we start with an empty VM image, set up the running program in the "program

code" memory field within the FPVM, and designate the Merkle root

𝑟𝑜(𝑆𝑖−1) as a key for lazy loading in the "input" memory field of the FPVM. Once

initialization and data filling are complete, we obtain the initial state 𝑆𝑘+1 for the next phase.

Due to the complexity of constructing 𝑆𝑘+1 and the gas limitations of Ethereum, we employ

a zero-knowledge circuit to verify the correctness of 𝑆𝑘+1's construction and validate the

zero-knowledge proof on the chain

Similarly, at the conclusion of the execution in Phase-2, we need to verify the consistency

between the submitter's state 𝑆𝑖 and the challenger's state 𝑆𝑖′.In particular, the state 𝑆𝑖 is

stored in the "output" field of the FPVM memory, and we can verify its integrity by

providing a Merkle proof.

10.4 DNN COMPUTATION IN MULTI-PHASE CHAINLEARN:

In this demonstration of a two-phase Chainlearn approach, we focus on the computation

process of Deep Neural Networks (DNNs) represented as a computation graph, denoted as 𝐺.

This is an outline of the steps involved in the process:

1. Computation Graph Representation:

The DNN computation is visualized as a computation graph, 𝐺, consisting of various

nodes representing different computational steps. These nodes store intermediate

computation results as the graph progresses.

2. DNN Model Inference:

DNN model inference involves executing computations on the computation graph, 𝐺.

Initially, the entire graph serves as the inference state, constituting the computation

context in Phase-1. As computations are performed on individual nodes, the graph

advances to its subsequent state.

3. Phase-1 Dispute Game:

In Phase-1, the dispute game is conducted directly on the computation graph.

Computation on graph nodes can be carried out in a native environment using multi-

thread CPU or GPU for efficiency. The bisection protocol assists in identifying the

disputed node, whose computation will be transitioned to Phase-2 for further

resolution.

4. Phase-2 Bisection:

Transitioning to Phase-2, the computation of the disputed node is transformed into

Virtual Machine (VM) instructions, akin to the single-phase protocol. This allows for

a structured resolution process to address any discrepancies or disputes identified in

Phase-1.

By implementing a two-phase Chainlearn approach, we streamline the resolution of disputes

in DNN computations while optimizing efficiency. Additionally, we anticipate extending this

approach to include more than two phases when dealing with computationally complex nodes,

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 134

Website: www.npajournals.org

further enhancing the robustness and effectiveness of the fraud-proof protocol.

10.5 PERFORMANCE IMPROVEMENT:

In this section, we delve into a concise discussion and analysis of our proposed multi-phase

fraud-proof framework. Let's consider the following scenario:

Assuming a DNN computation graph with 𝑛 nodes, where each node requires 𝑚 VM micro-

instructions to complete the computation in the VM. Let 𝛼 represent the speedup ratio

achieved through GPU or parallel computing, which can range from

tens to hundreds of times faster than single-thread VM execution. These premises allow us to

arrive to the following conclusions:

1. Performance

Two-phase Chainlearn surpasses single-phase Chainlearn in terms of performance,

achieving a computation speedup of 𝛼 times. By employing multi-phase verification,

we capitalize on the accelerated computation capabilities offered by GPU or parallel

processing, resulting in significant enhancements in overall performance.

2. Space Complexity

Two-phase Chainlearn minimizes the space complexity of the Merkle tree. A

comparison of Merkle tree space complexity reveals that in two-phase Chainlearn, the

size is (𝑚 + 𝑛), whereas in single-phase Chainlearn, the space complexity is

substantially larger at (𝑚𝑛). This reduction in Merkle tree size underscores the

efficiency and scalability of the multi-phase design.

In summary, the multi-phase fraud-proof framework presents a notable improvement in

performance, ensuring more efficient and expedited computations, especially when leveraging

the speedup capabilities of GPU or parallel processing. Furthermore, the decreased Merkle

tree size enhances the system's effectiveness and scalability, positioning multi-phase

Chainlearn as a compelling option for various applications.

11. SECURITY ANALYSIS:

Here, we perform a security analysis of our system using, for simplicity, Arbitrum's AnyTrust

assumption.

11.1 AnyTrust Assumption:

The AnyTrust assumption posits that for every claim made, there exists at least one honest

node. This implies that either the submitter is honest, or at least one verifier is honest and will

challenge within the pre-defined period. Even if 𝑚 − 1 verifiers collude to remain silent about

a submitter's incorrect claim, the presence of an honest verifier ensures that the wrong claim

can be disproven in front of the smart contract, resulting in its rejection. We also assume data

availability and anti- censorship, which are addressed by orthogonal countermeasures.

11.2 Safety and Liveness:

Under the AnyTrust assumption, Chainlearn can maintain both safety and liveness.

1. Safety: A single honest validator can compel Chainlearn to behave correctly. If all

nodes except one are malicious and one provides an incorrect result on- chain, the

honest node will identify the error and initiate a challenge. Through the dispute game,

the honest node and the malicious node will pinpoint the erroneous step, leading to

the rejection of the incorrect result and penalization of the malicious node.

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 135

Website: www.npajournals.org

2. Liveness: Any proposed result will be either accepted or rejected by the contract

within a maximum time period. The finite instruction set and execution traces of

Chainlearn ensure that computations are completed within a maximum time 𝑇𝑒. Even

in the worst-case scenario where malicious verifiers attempt to delay the process, the

result will be accepted or rejected within a bounded time frame.

12. INCENTIVE MECHANISM

To ensure the safety and liveness of Chainlearn, it's crucial to incentivize validators to

consistently verify results and encourage submitters to refrain from cheating.

This requires designing an incentive-compatible mechanism that aligns the interests of all

participants.

Rational validators should be motivated to verify results diligently, knowing that at least one

honest validator will scrutinize the outcome. Similarly, rational submitters should have no

incentive to cheat, understanding that any dishonest behavior will be swiftly detected and

penalized.

By creating such an incentive structure, we can foster a trustworthy environment where all

participants are incentivized to act honestly, contributing to the overall integrity and

effectiveness of the Chainlearn system.

13. VERIFIER DILEMMA

In the Verifier's Dilemma scenario in Chainlearn, the following payoff matrix describes the

potential outcomes for both the submitter and validators:

In this matrix:

1. 𝑆 represents the stake placed by each participant on the chain.

2. 𝐶 is the computation cost for Chainlarn execution.

3. 𝐵 is the benefit obtained by the submitter from cheating.

4. 𝐿 is the loss suffered by validators if the submitter cheats and isn't challenged.

5. 𝑅 is the reward received by validators if the submitter is successfully challenged.

The Nash equilibrium strategy in this verification game is one where neither the submitter nor

the validators have an incentive to deviate from their chosen action, given the action of the

other party. It typically occurs when both parties make decisions that maximize their own

payoff, considering the decisions of the other party.

In the context of Chainlearn, achieving a Nash equilibrium strategy is crucial to ensure that

both submitters and validators act in a manner that promotes the integrity and security of the

system.

13.1 Attention Challenge

To address the Verifier's Dilemma in Chainlearn, we introduce the Attention Challenge

mechanism. In this mechanism, instead of directly revealing the Chainlearn result f(x) on

chain, the submitter first reveals the hash of the result H(As,f(x)), where As is the address of

the submitter and H(⋅) is a hash function.

Here's how the Attention Challenge mechanism works:

1. The submitter reveals the hash of the result on chain: H(As,f(x)).

2. Validators have a window of time to respond on chain with their own hash value

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 136

Website: www.npajournals.org

H(Av,f(x)), where Av is the address of the validator.

3. If H(Av,f(x))<T for any validator, they must respond on chain within the time window.

4. After the time window expires, the submitter can post the actual chainlearn result f(x)

on chain.

5. If any validator responded incorrectly or did not respond within the time window, the

submitter can accuse them on chain. This accusation will be checked on chain, and if

valid, the accused validator will be penalized, with half of the penalty going to the

submitter and the other half being burned.

Theorem: If pt⋅G>C, where pt is the probability that a validator needs to respond, G is the

penalty for incorrect or non-response, and C is the computation cost, then rational validators

will always check, and rational submitters will never cheat.

Theorem 8.2. When 𝑝𝑡 ·𝐺 > 𝐶, the only Nash equilibrium of the verification game with attention

challenge mechanism is that validator will always check and the submitter will never cheat.

Proof : The utility for the validator to check the results is 𝑈 (check) = 𝑝𝑐𝑅 − 𝐶, and the utility

for the validator to be lazy and not check the results is 𝑈 (lazy) = −𝑝𝑐 · 𝐿 − 𝑝𝑡 · 𝐺. When 𝑝𝑡 ·

𝐺 > 𝐶, we have that 𝑈 (check) − 𝑈 (lazy) = 𝑝𝑐 (𝑅 + 𝐶) + 𝑝𝑡𝐺 − 𝐶 > 0, ∀𝑝𝑐 ∈ [0, 1]

Indeed, the proof is now complete. Regardless of the probability that the submitter may cheat,

the dominant strategy for the validator remains to always check.

To be more precise, during the inference stage of a deep neural network (DNN) model, a

simple forward computation is performed on the DNN computation graph, or 𝐺.

Conversely, the training process encompasses both forward computation and backward update

(backpropagation) on the same DNN computation graph 𝐺. Despite their differing objectives,

the computation processes for forward

computation and backward update share similarities, allowing for a unified approach to

handling both tasks within the chainlearn framework.

Through the incorporation of a multi-phase chainlearn approach, we can efficiently extend

support to the training process. Here's how it operates: During each iteration of the training

process, the dispute game is initiated to identify any disputes within that specific iteration.

Subsequently, the process progresses to the next phase, where both the submitter and

challenger participate in a dispute protocol concerning the computation graph for both

forward and backward processes. This facilitates the identification of the disputed node, and

the computation associated with this node is then forwarded to the subsequent phase, where

the fraud-proof VM arbitrates the issue.

Verifying ML model development on the blockchain is significantly impacted by the

expansion of chainlearn to include the training phase.

By leveraging on-chain data for training and updating the ML model, chainlearn ensures

auditability and transparency throughout the proce Knowing this, the dominant strategy for

the submitter becomes clear: always provide a correct result. This strategic alignment ensures

that both parties act in their best interest, leading to a system where honesty is incentivized

and cheating is disincentivized. With this, the security and reliability of the chainlearn system

are effectively ensured.

The cost analysis demonstrates that the introduction of the attention challenge mechanism in

chainlearn incurs minimal expenses. Assuming an interest rate 𝑟 for locking up the stake 𝐺

National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print)

Volume No: 11, Issue No: 1, Year: 2024 (January-June) Peer Reviewed & Refereed Journal

PP: 126-137 National Research Journal

Published By: National Press Associates Page 137

Website: www.npajournals.org

and a gas fee 𝑡 for the validator to respond, the extra cost for implementing this mechanism in

chainlearn amounts to 𝑟𝐺 + 𝑡𝑝𝑡. By setting 𝐺 =√(𝑡𝐶/𝑟) and 𝑝𝑡 = √(𝑟𝐶/𝑡), the minimal cost is

at least 2√(𝑟𝑡𝐶).

For instance, considering the specific case of a GPT-3.5 inference taking 1 second on an

A100 with a raw computation cost of $0.001 for 1,000 tokens, with 𝑟 = 0.001 and 𝑡 = $1,

setting 𝐺 = 1 and 𝑝𝑡 = 0.1%, the total cost for implementing the attention challenge per

chainlearn request amounts to only $0.002. This minimal cost underscores the affordability

and feasibility of integrating the attention challenge mechanism into chainlearn.

14. CONCLUSION

In conclusion, the optimistic approach to on-chain AI and machine learning presents

significant advantages over existing methods, allowing for the integration of AI capabilities

with the integrity and security inherent in blockchain technology. Chainlearn emerges as a

standout solution, offering a cost- effective and efficient ML service when compared to

zkML. This positions chainlearn as a crucial player in shaping the future of decentralized,

secure, and transparent AI services. As the landscape of on-chain AI continues to evolve,

chainlearn remains a pivotal solution, unlocking the full potential of these technologies and

spearheading a transformative journey towards accessible, secure, and efficient on-chain

machine learning.

REFERENCES

Ben Goertzel, Simone Giacomelli, David Hanson, Cassio Pennachin, and Marco Argentieri. 2017.

SingularityNET: A decentralized, open market and inter- network for AIs. Thoughts, Theories Stud. Artif. Intell.

Res. (2017).

Justin D Harris and Bo Waggoner. 2019. Decentralized and collaborative AI on blockchain. In 2019 IEEE

international conference on blockchain (Blockchain).

Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan Capkun. 2020. ACE: Asynchronous and

concurrent execution of complex smart contracts. In Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security. 587–600.

Ran Canetti, Ben Riva, and Guy N Rothblum. 2011. Practical delegation of computation using multiple servers.

In Proceedings of the 18th ACM conference on Computer and communications security. 445–454.

Thang N Dinh and My T Thai. 2018. AI and blockchain: A disruptive integration. Computer 51, 9 (2018), 48–

53.

 Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. ZkCNN: Zero knowledge proofs for convolutional neural

network predictions and accuracy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security. 2968–2985.

Z Chen, W Wang, X Yan, and J Tian. 2018. Cortex-AI on blockchain: The decentralized AI autonomous

system. Cortex White Paper (2018).

Zhibo Xing, Zijian Zhang, Meng Li, Jiamou Liu, Liehuang Zhu, Giovanni Russello, and Muhammad Rizwan

Asghar. Zero-Knowledge Proof-based Practical Federated Learning on Blockchain. arXiv preprint

arXiv:2304.05590 (2023).

 Zihan Zheng, Peichen Xie, Xian Zhang, Shuo Chen, Yang Chen, Xiaobing Guo, Guangzhong Sun, Guangyu

Sun, and Lidong Zhou. 2021. Agatha: Smart contract for DNN computation. arXiv preprint arXiv:2105.04919

(2021).

