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ABSTRACT 

The convergence of blockchain technology with machine learning has garnered notable 

attention, spurred by the vision of decentralized, secure, and transparent AI services. Within 

this landscape, we present Chain learn (Blockchain-Powered Optimistic Machine Learning), 

a novel methodology that empowers blockchain frameworks to perform AI model inference. 

Chain learn employs an interactive fraud-proof protocol, reminiscent of optimistic rollup 

systems, to ensure decentralized and verifiable consensus for machine learning services, 

thereby enhancing trust and transparency. In contrast to zkML (Zero-Knowledge Machine 

Learning), Chain learn offers cost-effective and highly efficient ML services with minimal 

participation requirements. Notably, Chain learn facilitates the execution of extensive language 

models, such as 7B-LLaMA, on standard PCs without GPUs, substantially broadening 

accessibility. Through the amalgamation of blockchain and AI capabilities via Chain learn, we 

embark on a transformative journey towards accessible, secure, and efficient on-chain 

machine learning.  

Keywords: Blockchain, Machine Learning, Fraud Proof, Rollup. 

1. INTRODUCTION 

In the dynamic landscape of digital advancement, the fusion of Artificial Intelligence (AI) 

and blockchain technology signifies a transformative shift in how we engage with and 

leverage information. AI, known for its advanced data analysis and decision- making 

abilities, and blockchain, a decentralized ledger celebrated for its security and transparency, 

have united to pioneer novel avenues in the digital domain. As distinct forces with unique 

capabilities, the convergence of AI and blockchain is redefining the boundaries of digital 

possibility. This convergence has introduced the concept of "Onchain AI," a cutting-edge 

paradigm prepared to provide decentralized, safe, and effective AI services directly within the 

blockchain network. However, a prevalent challenge within the realm of "Onchain AI" is the 

impracticality of executing AI computations directly on the blockchain. For example, a 

seemingly simple task like matrix multiplication of 1000 × 1000 integers would incur over 3 

billion gas costs, far surpassing the current gas limit imposed by Ethereum. As a result, many 

of these applications opt for off-chain computations on centralized servers, only transferring 

the outcomes onto the blockchain. While this approach may yield functional outputs, it 

inherently compromises decentralization. This compromise not only introduces significant 

security concerns but also undermines the fundamental principles of trust and transparency 

that blockchain technology seeks to promote. An alternative approach involves harnessing 

Zero- Knowledge Machine Learning (zkML), representing a groundbreaking paradigm in 

merging machine learning and blockchain technologies. zkML's utilization of zk- SNARKs 

(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) has played a crucial 

role in safeguarding sensitive model parameters and user data throughout the training and 

inference phases. This not only addresses privacy 
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concerns but also alleviates the computational strain on the blockchain network, positioning 

zkML as a promising solution for decentralized machine learning applications. While zkML 

offers undeniable advantages in bolstering privacy and security within machine learning on 

the blockchain, it's vital to recognize its inherent limitations. One of the most notable 

challenges lies in the substantial cost associated with proof generation in zkML. 

The process necessitates significant computational resources, leading to prolonged generation 

times and extensive memory usage. Consequently, zkML is most suitable for relatively 

modest models, as its inefficiency becomes evident when handling larger and more intricate 

models. For instance, zkML would require over 1000 times the memory and computational 

resources for ZK proof generation. As a result, zkML may prove impractical for expansive AI 

applications necessitating the handling of large-scale datasets and complex model parameters. 

In response to the limitations of zkML, we explore the utilization of fraud proof to validate the 

accuracy of ML outcomes on the blockchain, as opposed to relying on zero-knowledge proofs 

(ZKPs), also known as validity proofs. Fraud proofs are a common feature in blockchain 

systems, particularly within rollup systems, which belong to the broader category of 

optimistic systems. Prominent examples of rollup systems utilizing Arbitrum and Optimism 

as fraud evidence. In a system employing fraud proof, there's an optimistic assumption that 

each proposed result is valid by default. However, in cases where there's a suspicion of invalid 

results, the system introduces a challenge period during which participants can challenge the 

submitter. The fraud proof is generated through an interactive pinpoint protocol, 

demonstrating that the provided result is erroneous. The arbitration process is designed to 

validate a fraud proof with minimal computational steps, ensuring that the on-chain cost 

remains exceedingly low. Encouraging system design as a basis, we provide Chainlearn: 

Optimistic Machine Learning on the blockchain1. Diverging from the approach of zkML, 

which relies on zero- knowledge proofs, Chainlearn adopts a fraud-proof system to 

guarantee the correctness of ML results. Submitters can run machine learning (ML) 

algorithms in their own environment and then publish the results straight to the blockchain 

using the Chainlearn platform. This approach maintains an optimistic assumption that each 

proposed result is inherently valid. During the challenge process, validators will check the 

correctness of these submitted results. If the results are invalid, he will start the dispute game 

(bisection protocol) with the submitter and tries to disprove the claim by pinpointing one 

concrete erroneous step. 

2. DESIGN PRINCIPLES 

The design principles underlying ChainLearn are outlined as follows: 

1. Deterministic ML Execution: To ensure consistency and determinism in ML 

execution, ChainLearn employs fixed-point arithmetic and software- based floating-

point libraries. This approach guarantees that the ML execution process can be 

represented by a deterministic state transition function, mitigating variability 

stemming from randomness and floating- point computation. 

2. Separate Execution from Proving: ChainLearn utilizes a dual-target compilation 

approach, compiling the same source code twice. One compilation is optimized for 

native execution, leveraging multithreaded CPUs and GPUs for enhanced speed. The 

other compilation targets fraud- proof VM instructions for use in the fraud-proof 

protocol. This strategy ensures swift execution while maintaining machine-

independent code for proving. 

3. Optimistic Machine Learning with Interactive Fraud Proofs: Adopting interactive 

fraud proof mechanisms, ChainLearn employs a process that progressively resolves 
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disputes to a single instruction level, ultimately resolving base-case discrepancies 

using on-chain fraud-proof VMs. 

4. Optimizing ML Fraud Proof with Multi-Phase Protocol: Traditional fraud-proof 

systems, as prevalent in optimistic rollup systems, often require cross-compilation of 

entire computations into fraud-proof VM instructions, leading to inefficient execution 

and substantial memory consumption. ChainLearn introduces a novel multi-phase 

protocol featuring semi-native execution and lazy loading. This approach significantly 

accelerates the fraud-proof process while minimizing memory overhead. 

3. ARCHITECTURE 

ChainLearn relies on a fraud-proof mechanism to verify the accuracy of machine learning 

outcomes on the blockchain. This fraud-proof mechanism within ChainLearn comprises three 

essential elements: 

1. Fraud-Proof Virtual Machine (FPVM): FPVM can track any instruction step of a 

stateless program along with its inputs and validate it on the layer 1 blockchain (L1). 

2. Machine Learning Engine: This highly efficient engine is tailored to handle both native 

execution and fraud-proof scenarios. It ensures fast and precise execution of machine 

learning tasks while maintaining result consistency and determinism. 

3. Interactive Dispute Resolution: The dispute resolution process in ChainLearn breaks 

down disputes to single instructions and resolves them  using on-chain FPVM. 

4. WORKFLOW: 

On-chain verification is crucial in ChainLearn. Verifiers, also known as challengers, 

scrutinize these outcomes. In case of disputes, the bisection protocol is activated to pinpoint 

and rectify any identified errors. The workflow in ChainLearn unfolds as follows: 

1. The requester initiates an ML service task. 

2. The submitter executes the ML service task and records the result on-chain. 

3. Verifiers (challengers) validate the results. If deemed incorrect, a verifier initiates the 

dispute game (bisection protocol) with the server to disprove the claim by identifying 

specific erroneous steps. 

4. Smart contract arbitration resolves the disputed step, offering a conclusive resolution to 

the dispute. 

5. After a specified "challenge period," the results are confirmed. 

Both the server (submitter) and the verifier (challenger) are required to stake in the system. 

Providing incorrect results results in a loss of stake. Thus, if all parties follow their 

incentives, only valid results are committed. Consequently, in most cases, the server 

(submitter) provides correct results, and verifiers (challengers) validate them, minimizing the 

occurrence of the dispute game. After the defined "challenge period," the results are 

confirmed. 

5. FRAUD PROOF VIRTUAL MACHINE 

We've developed a Fraud Proof Virtual Machine (FPVM) for executing off-chain and 

handling on-chain arbitration. We ensure that the off-chain VM is equivalent to the on-chain 

VM implemented in a smart contract. Essentially, the FPVM operates as a state transition 

function where each operation, termed as a Step, executes a single instruction. Given an input 
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state 𝑆𝑝𝑟𝑒 with instructions encoded within it, the FPVM, acting as a state transition function 

denoted as (·), generates a new state 𝑆𝑝𝑜𝑠𝑡 , represented as 𝑉𝑀(𝑆𝑝𝑟𝑒 ) →𝑆𝑝𝑜𝑠𝑡 . As a result, 

an ordered set of VM states makes up the trace of a program run by the FPVM, which shows 

the results of running a machine learning program on the FPVM. 

The execution trace 𝑇 is a sequence (𝑆0, 𝑆1, 𝑆2, · · · , 𝑆𝑛), where each 𝑆𝑖 represents a VM 

state, and 𝑆𝑖 = 𝑉𝑀(𝑆𝑖−1), ∀𝑖 ∈ [1, 𝑛]. Every execution trace has a unique initial state 𝑆0, 

determined by the ML model and input. 

Management of the VM state is facilitated by a Merkle tree, where only the Merkle root is 

uploaded to the on-chain smart contract, representing the VM state. The memory layout in the 

FPVM comprises various areas, including "program code," "input," "output," "oracle key," 

"oracle value," and "model," as depicted in figure below. The machine learning program 

resides in the "program" field, the input for the ML model is stored in the "input" field, and 

the ML model itself is situated in the "model" field. The output of chainlearn is placed in the 

"output" field upon completion of the ML program execution. Furthermore, the fraud-proof 

system has a key-value oracle that the FPVM uses to access outside data as it changes states. 

The oracle key and value are stored in the "oracle key" and "oracle value" fields, respectively. 

Furthermore, the FPVM memory is structured as a Merkle tree with a fixed depth of 27 

levels, with leaf values comprising 32 bytes each. This structure covers the full 32-bit address 

space, where each leaf contains the memory data. The Merkle root of the tree reflects the 

effects of memory writes in the FPVM, enabling representation of each field in the FPVM 

memory as a Merkle subtree root. 

6. MACHINE LEARNING ENGINE 

Within ChainLearn, we've developed a highly efficient machine learning engine to 

accommodate both native execution and fraud-proof scenarios. This engine not only 

facilitates rapid and precise execution of machine learning tasks but also ensures the 

consistency and determinism of results. This aspect is especially vital during dispute 

resolution, as the machine learning engine can reliably produce a valid output and verify 

disputes in a stateless manner, thereby bolstering the dependability of the entire system. 

7. SEPARATE EXECUTION FROM PROVING 

Following the design principle of "Separate Execution from Proving," we have designed a 

highly efficient machine learning engine for chainLearn. This engine offers two types of 

implementations: one optimized for native execution, prioritizing speed, and utilizing multi-

threaded CPUs and GPUs for acceleration; the other compiled into a fraud-proof program for 

FPVM. This dual-target approach ensures swift execution while maintaining the integrity of 

the proving process, which relies on machine-independent code. Consider the example of 

matrix multiplication within the machine learning engine, as depicted in code below. During 

native execution, GPU calculation (using CUDA) is employed for  acceleration, as illustrated 

in code below. However, because CUDA calculator compatibility  is not supported, the 

machine learning engine is compiled into machine-independent FPVM instructions for the 

proof step. Both implementations guarantee consistent execution results across different     

scenarios. 

// a,b,c are GPU device pointers to matrix void GpuMatrixMultiplication(int *a, int *b, int *c, 

int m, int n, int k) { int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * 

blockDim.x + threadIdx.x; int sum = 0; for(int i = 0; i < n; i++) {sum += a[row * n + i] * b[i * 

k + col];} c[row * k + col] = sum; The process of matrix multiplication within the machine 

learning engine, utilizing GPU acceleration for native execution 
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In our current implementation, we've prioritized the efficiency of AI model computation 

within the FPVM. To achieve this, we've developed a lightweight machine learning engine 

tailored specifically for this purpose, rather than relying on popular ML frameworks like 

TensorFlow or PyTorch. Additionally, we provide a script capable of converting models from 

TensorFlow and PyTorch to this lightweight library. With this script, models trained on 

TensorFlow or PyTorch can be converted to the ChainLearn model format. Consistency and 

determinism are crucial aspects addressed in our implementation. Randomness and 

unpredictability in floating-point calculations are the two main causes of inconsistencies in 

machine learning outcomes. 

To mitigate randomness, it's common practice to fix the random seed in the random number 

generator, as computer-generated randomness is essentially pseudo-random. Addressing 

inconsistencies in floating-point computations is more complex Variations in execution 

results may arise from floating-point number properties during native DNN computations, 

particularly across multiple hardware platforms. Rounding mistakes can lead to non-identical 

results in parallel computations involving floating-point numbers, such as (𝑎 𝑏) 𝑐 vs 𝑎 (𝑏 𝑐). 

Additionally, variables like as operating system, compiler version, and programming 

language can further affect how floating-point numbers are computed, which exacerbates 

inconsistent ML results. 

To address these challenges and ensure the consistency of ChainLearn, we employ two key 

approaches: 

1. Fixed-Point Arithmetic: We adopt fixed-point arithmetic, also known as 

quantization technology. By employing this method, we can represent and execute 

calculations with fixed precision instead of floating-point integers. 

By doing so, we mitigate the effects of floating-point rounding errors, resulting in 

more reliable and consistent results. It's important to note that using fixed-point 

arithmetic may lead to a slight loss of accuracy in DNN models. This tradeoff 

between execution performance and model accuracy is an essential consideration when 

implementing such precision techniques. 

2. Software-Based Floating-Point Libraries (softfloat): We utilize software- based 

floating-point libraries (softfloat) designed to operate consistently across different 

platforms. These libraries guarantee determinism and cross- platform consistency of 

the ML results, independent of the underlying software or hardware configurations. 

By integrating fixed-point arithmetic and software-based floating-point libraries 

(softfloat), we establish a robust foundation for achieving consistent and reliable ML 

results within the ChainLearn framework. 

8. LOCATING THE DISPUTED POINT: 

At the outset, the submitter and verifier agree on the initial state 𝑆0 but disagree on the final 

state 𝑆𝑛 ≠ 𝑆𝑛'. The objective of the protocol, depicted in Figure 5, is to pinpoint a specific 

VM𝑘 within a sequence of VM instructions executed within the context of the initial VM state 

𝑆0 (with 𝑛 such instructions in total), where 𝑆𝑘−1 ≠ 

𝑆𝑘−1 but 𝑆𝑘 = 𝑆𝑘'. 

The dispute game unfolds in a sequence of rounds. At the start of each round, the submitter 

and verifier agree on a starting VM state 𝑆𝑖 and disagree on the ending state 𝑆𝑖+𝑗 for some 𝑗 > 

1.  At first, i = 0 and j = 𝑛. 

. Subsequently, the challenger must claim the state 𝑆𝑚 at the midpoint of the VM state, where 
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𝑚 = 𝑖 + ⌊𝑗/2⌋. Then, the submitter confirms or disagrees with the challenger's midpoint state 

𝑆𝑚. 

Two scenarios can unfold: 

1. If the submitter agrees with the challenger's midpoint state, a smaller dispute is 

identified, and the protocol proceeds with the next round, adjusting 𝑖 and 𝑗 
accordingly. 

2. If the submitter disagrees with the challenger's midpoint state, another smaller dispute 

is identified, and the protocol proceeds to the next round. 

In both cases, the length of the dispute is halved, and the procedure is repeated until 𝑗 = 1. 

The efficiency of the dispute game is noteworthy. In terms of time complexity, both the 

verifier and submitter require only ⌈log 𝑛⌉ rounds of challenge-response to converge on the 

same value of 𝑘, where 𝑆𝑘−1 ≠ 𝑆𝑘−1 but 𝑆𝑘 

= 𝑆𝑘'. A timeout penalty-equipped challenge-response mechanism helps to achieve this 

synchronization. 

Subsequently, the state 𝑆𝑘−1, along with auxiliary data, is forwarded to a smart contract for 

arbitration. 

9. ONCHAIN ARBITRATION 

For on-chain arbitration, the submitter and verifier will send (VMI𝑘, S𝑘−1, S𝑘) to the contract 

for arbitration. The on-chain VM will take S𝑘−1 as input and conduct a one-step execution to 

output the correct S. Because the on-chain virtual machine (VM) only performs a single 

instruction, the amount of data (witness) that must be retrieved is a mere 0(1). 

In on-chain arbitration, the witness comprises a partial expansion of the Merkle tree 

representing the before state 𝑆𝑘−1. The on-chain VM uses this partially expanded state tree to 

read the next instruction, emulate the instruction execution, and then compute the Merkle root 

hash of the resulting state. Notably, the one-step on-chain VM execution always requires only 

(1) computation and memory consumption, ensuring that on-chain arbitration can be 

conducted using a feasible amount of Ethereum gas. 

The challenger wins if they are able to present a legitimate one-step evidence at the on-chain 

arbitration. 

. Otherwise, the submitter wins the challenge. 

10. MULTI-PHASE DISPUTE GAME 

10.1 LIMITATIONS OF ONE-PHASE DISPUTE GAME 

With the design principle of "Separate Execution from Proving," we can achieve high 

performance in the optimistic scenario where the submitter consistently provides correct 

results. However, to safeguard against malicious behavior in the pessimistic scenario, we still 

require generating a fraud-proof for Chainlearn. In chainlearn’s fraud-proof protocol, we 

cross-compile the ML computation into fraud-proof VM instructions and then initiate the 

dispute game to identify the disputed step. However, this approach of cross-compiling the 

entire ML computation into fraud-proof VM instructions presents significant limitations: 

1. Low Execution Efficiency: The one-phase dispute game suffers from a critical 

drawback: for proving, all computations must be executed within the FPVM, thereby 

preventing us from harnessing the full potential of GPU/TPU acceleration or parallel 

processing. This constraint thus seriously compromises the effectiveness of offering 
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fraud-proofing for large-scale model inference, and it is also consistent with the 

existing restriction of the referred delegation of the computation (RDoC) protocol. 

2. Restricted Memory in Fraud-Proof VM: The MIPS VM, for instance, can only 

accommodate up to 4 GB of memory. The fraud-proof VM has limited memory 

capacity. 

Due to this limitation, we cannot directly load a large model into the fraud-proof VM. For 

instance, the size of a 7B-llama model in float64 is around 26GB, exceeding the memory 

capacity of the MIPS FPVM. 

10.2 OVERVIEW OF MULTI-PHASE PROTOCOL 

To overcome the constraints of the one-phase protocol and ensure that chainlearn can 

generate fraud-proof with performance comparable to the native environment, we introduce a 

multi-phase protocol. The multi-phase dispute game offers the following features to 

effectively address the aforementioned limitations: 

1. Semi-Native Execution: By using a multi-phase architecture, we reduce the amount of 

processing required in the virtual machine (VM) until the last stage, which is similar to 

a single-phase protocol. 

2. During earlier phases, we have the flexibility to execute computations leading to state 

transitions in the native environment, leveraging parallel processing capabilities in 

CPU, GPU, or even TPU. By reducing reliance on the VM, we significantly decrease 

overhead, resulting in a notable improvement in chainlearn’s execution performance, 

almost matching that of the native environment. 

3. Lazy Loading Design: To optimize memory usage and VM performance, we 

implement a lazy loading technique. Instead of loading all data into the VM memory 

at once, we only load keys identifying each data item. When the VM needs to access a 

specific data item, it retrieves it from an external source using the key and loads it into 

memory. Once the data item is no longer required, it is swapped out of memory to free 

up space for other data items. This approach allows us to handle large datasets without 

exceeding memory capacity or compromising VM efficiency. 

4. Figure below illustrates a verification game comprising two phases (k = 2). Phase- 2 

procedures are similar to those of a single-phase verification game in that every 

change in state is attributed to a single VM micro-instruction that modifies the VM 

state. 

5. Phase-1 state transitions are equivalent to a "Large Instruction" consisting of several 

micro-instructions that alter the context of processing. 

6. . Initially, the submitter and challenger engage in the dispute game during Phase-1 

using a bisection protocol to pinpoint the dispute step within a "large instruction." This 

step is then forwarded to Phase-2. Phase-2 operates similarly to the single- phase 

dispute game. The bisection protocol in Phase-2 aids in identifying the dispute step 

within a VM micro-instruction. Subsequently, this step is sent to the arbitration 

contract on the blockchain. 

10.3 STATE TRANSITION TO NEXT PHASE: 

To maintain the integrity and security of the transition to the next phase, we utilize the 

Merkle tree. Illustrated in Figure 7, this process entails extracting a Merkle sub- tree 

reconstruction, ensuring the smooth continuation of the dispute game process. As an 



National Research Journal of Information Technology & Information Science ISSN No: 2350-1278 (Print) 

Volume No: 11, Issue No: 1, Year: 2024 (January-June)  Peer Reviewed & Refereed Journal 

PP: 126-137  National Research Journal 

Published By: National Press Associates  Page 133 

Website: www.npajournals.org 

example, let's look at the state transition in the two-phase protocol. 

In Phase-1, after the submitter and challenger have identified the dispute step on a "large 

instruction", denoted as 𝑆𝑖−1 ≠ 𝑆𝑖, we proceed to construct a Merkle tree on the state data 

𝑆𝑖−1 to obtain the Merkle tree root 𝑟𝑜(𝑆𝑖−1). Next, we initialize the initial state in the next 

phase, denoted as 𝑆𝑘+1, using this Merkle root. 

Specifically, we start with an empty VM image, set up the running program in the "program 

code" memory field within the FPVM, and designate the Merkle root 

𝑟𝑜(𝑆𝑖−1) as a key for lazy loading in the "input" memory field of the FPVM. Once 

initialization and data filling are complete, we obtain the initial state 𝑆𝑘+1 for the next phase. 

Due to the complexity of constructing 𝑆𝑘+1 and the gas limitations of Ethereum, we employ 

a zero-knowledge circuit to verify the correctness of 𝑆𝑘+1's construction and validate the 

zero-knowledge proof on the chain 

Similarly, at the conclusion of the execution in Phase-2, we need to verify the consistency 

between the submitter's state 𝑆𝑖 and the challenger's state 𝑆𝑖′.In particular, the state 𝑆𝑖 is 

stored in the "output" field of the FPVM memory, and we can verify its integrity by 

providing a Merkle proof. 

10.4 DNN COMPUTATION IN MULTI-PHASE CHAINLEARN: 

In this demonstration of a two-phase Chainlearn approach, we focus on the computation 

process of Deep Neural Networks (DNNs) represented as a computation graph, denoted as 𝐺. 

This is an outline of the steps involved in the process: 

1. Computation Graph Representation: 

The DNN computation is visualized as a computation graph, 𝐺, consisting of various 

nodes representing different computational steps. These nodes store intermediate 

computation results as the graph progresses. 

2. DNN Model Inference: 

DNN model inference involves executing computations on the computation graph, 𝐺. 

Initially, the entire graph serves as the inference state, constituting the computation 

context in Phase-1. As computations are performed on individual nodes, the graph 

advances to its subsequent state. 

3. Phase-1 Dispute Game: 

In Phase-1, the dispute game is conducted directly on the computation graph. 

Computation on graph nodes can be carried out in a native environment using multi-

thread CPU or GPU for efficiency. The bisection protocol assists in identifying the 

disputed node, whose computation will be transitioned to Phase-2 for further 

resolution. 

4. Phase-2 Bisection: 

Transitioning to Phase-2, the computation of the disputed node is transformed into 

Virtual Machine (VM) instructions, akin to the single-phase protocol. This allows for 

a structured resolution process to address any discrepancies or disputes identified in 

Phase-1. 

By implementing a two-phase Chainlearn approach, we streamline the resolution of disputes 

in DNN computations while optimizing efficiency. Additionally, we anticipate extending this 

approach to include more than two phases when dealing with computationally complex nodes, 
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further enhancing the robustness and effectiveness of the fraud-proof protocol. 

10.5 PERFORMANCE IMPROVEMENT: 

In this section, we delve into a concise discussion and analysis of our proposed multi-phase 

fraud-proof framework. Let's consider the following scenario: 

Assuming a DNN computation graph with 𝑛 nodes, where each node requires 𝑚 VM micro-

instructions to complete the computation in the VM. Let 𝛼 represent the speedup ratio 

achieved through GPU or parallel computing, which can range from 

tens to hundreds of times faster than single-thread VM execution. These premises allow us to 

arrive to the following conclusions: 

1. Performance 

Two-phase Chainlearn surpasses single-phase Chainlearn in terms of performance, 

achieving a computation speedup of 𝛼 times. By employing multi-phase verification, 

we capitalize on the accelerated computation capabilities offered by GPU or parallel 

processing, resulting in significant enhancements in overall performance. 

2. Space Complexity 

Two-phase Chainlearn minimizes the space complexity of the Merkle tree. A 

comparison of Merkle tree space complexity reveals that in two-phase Chainlearn, the 

size is (𝑚 + 𝑛), whereas in single-phase Chainlearn, the space complexity is 

substantially larger at (𝑚𝑛). This reduction in Merkle tree size underscores the 

efficiency and scalability of the multi-phase design. 

In summary, the multi-phase fraud-proof framework presents a notable improvement in 

performance, ensuring more efficient and expedited computations, especially when leveraging 

the speedup capabilities of GPU or parallel processing. Furthermore, the decreased Merkle 

tree size enhances the system's effectiveness and scalability, positioning multi-phase 

Chainlearn as a compelling option for various applications. 

11. SECURITY ANALYSIS: 

Here, we perform a security analysis of our system using, for simplicity, Arbitrum's AnyTrust 

assumption. 

11.1 AnyTrust Assumption: 

The AnyTrust assumption posits that for every claim made, there exists at least one honest 

node. This implies that either the submitter is honest, or at least one verifier is honest and will 

challenge within the pre-defined period. Even if 𝑚 − 1 verifiers collude to remain silent about 

a submitter's incorrect claim, the presence of an honest verifier ensures that the wrong claim 

can be disproven in front of the smart contract, resulting in its rejection. We also assume data 

availability and anti- censorship, which are addressed by orthogonal countermeasures. 

11.2 Safety and Liveness: 

Under the AnyTrust assumption, Chainlearn can maintain both safety and liveness. 

1. Safety: A single honest validator can compel Chainlearn to behave correctly. If all 

nodes except one are malicious and one provides an incorrect result on- chain, the 

honest node will identify the error and initiate a challenge. Through the dispute game, 

the honest node and the malicious node will pinpoint the erroneous step, leading to 

the rejection of the incorrect result and penalization of the malicious node. 
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2. Liveness: Any proposed result will be either accepted or rejected by the contract 

within a maximum time period. The finite instruction set and execution traces of 

Chainlearn ensure that computations are completed within a maximum time 𝑇𝑒. Even 

in the worst-case scenario where malicious verifiers attempt to delay the process, the 

result will be accepted or rejected within a bounded time frame. 

12. INCENTIVE MECHANISM 

To ensure the safety and liveness of Chainlearn, it's crucial to incentivize validators to 

consistently verify results and encourage submitters to refrain from cheating. 

This requires designing an incentive-compatible mechanism that aligns the interests of all 

participants. 

Rational validators should be motivated to verify results diligently, knowing that at least one 

honest validator will scrutinize the outcome. Similarly, rational submitters should have no 

incentive to cheat, understanding that any dishonest behavior will be swiftly detected and 

penalized. 

By creating such an incentive structure, we can foster a trustworthy environment where all 

participants are incentivized to act honestly, contributing to the overall integrity and 

effectiveness of the Chainlearn system. 

13. VERIFIER DILEMMA 

In the Verifier's Dilemma scenario in Chainlearn, the following payoff matrix describes the 

potential outcomes for both the submitter and validators: 

In this matrix: 

1. 𝑆 represents the stake placed by each participant on the chain. 

2. 𝐶 is the computation cost for Chainlarn execution. 

3. 𝐵 is the benefit obtained by the submitter from cheating. 

4. 𝐿 is the loss suffered by validators if the submitter cheats and isn't challenged. 

5. 𝑅 is the reward received by validators if the submitter is successfully challenged. 

The Nash equilibrium strategy in this verification game is one where neither the submitter nor 

the validators have an incentive to deviate from their chosen action, given the action of the 

other party. It typically occurs when both parties make decisions that maximize their own 

payoff, considering the decisions of the other party. 

In the context of Chainlearn, achieving a Nash equilibrium strategy is crucial to ensure that 

both submitters and validators act in a manner that promotes the integrity and security of the 

system. 

13.1 Attention Challenge 

To address the Verifier's Dilemma in Chainlearn, we introduce the Attention Challenge 

mechanism. In this mechanism, instead of directly revealing the Chainlearn result f(x) on 

chain, the submitter first reveals the hash of the result H(As,f(x)), where As is the address of 

the submitter and H(⋅) is a hash function. 

Here's how the Attention Challenge mechanism works: 

1. The submitter reveals the hash of the result on chain: H(As,f(x)). 

2. Validators have a window of time to respond on chain with their own hash value 
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H(Av,f(x)), where Av is the address of the validator. 

3. If H(Av,f(x))<T for any validator, they must respond on chain within the time window. 

4. After the time window expires, the submitter can post the actual chainlearn result f(x) 

on chain. 

5. If any validator responded incorrectly or did not respond within the time window, the 

submitter can accuse them on chain. This accusation will be checked on chain, and if 

valid, the accused validator will be penalized, with half of the penalty going to the 

submitter and the other half being burned. 

Theorem: If pt⋅G>C, where pt is the probability that a validator needs to respond, G is the 

penalty for incorrect or non-response, and C is the computation cost, then rational validators 

will always check, and rational submitters will never cheat. 

Theorem 8.2. When 𝑝𝑡 ·𝐺 > 𝐶, the only Nash equilibrium of the verification game with attention 

challenge mechanism is that validator will always check and the submitter will never cheat. 

Proof : The utility for the validator to check the results is 𝑈 (check) = 𝑝𝑐𝑅 − 𝐶, and the utility 

for the validator to be lazy and not check the results is 𝑈 (lazy) = −𝑝𝑐 · 𝐿 − 𝑝𝑡 · 𝐺. When 𝑝𝑡 · 

𝐺 > 𝐶, we have that 𝑈 (check) − 𝑈 (lazy) = 𝑝𝑐 (𝑅 + 𝐶) + 𝑝𝑡𝐺 − 𝐶 > 0, ∀𝑝𝑐 ∈ [0, 1] 

Indeed, the proof is now complete. Regardless of the probability that the submitter may cheat, 

the dominant strategy for the validator remains to always check. 

To be more precise, during the inference stage of a deep neural network (DNN) model, a 

simple forward computation is performed on the DNN computation graph, or 𝐺. 

Conversely, the training process encompasses both forward computation and backward update 

(backpropagation) on the same DNN computation graph 𝐺. Despite their differing objectives, 

the computation processes for forward 

computation and backward update share similarities, allowing for a unified approach to 

handling both tasks within the chainlearn framework. 

Through the incorporation of a multi-phase chainlearn approach, we can efficiently extend 

support to the training process. Here's how it operates: During each iteration of the training 

process, the dispute game is initiated to identify any disputes within that specific iteration. 

Subsequently, the process progresses to the next phase, where both the submitter and 

challenger participate in a dispute protocol concerning the computation graph for both 

forward and backward processes. This facilitates the identification of the disputed node, and 

the computation associated with this node is then forwarded to the subsequent phase, where 

the fraud-proof VM arbitrates the issue. 

Verifying ML model development on the blockchain is significantly impacted by the 

expansion of chainlearn to include the training phase. 

By leveraging on-chain data for training and updating the ML model, chainlearn ensures 

auditability and transparency throughout the proce Knowing this, the dominant strategy for 

the submitter becomes clear: always provide a correct result. This strategic alignment ensures 

that both parties act in their best interest, leading to a system where honesty is incentivized 

and cheating is disincentivized. With this, the security and reliability of the chainlearn system 

are effectively ensured. 

The cost analysis demonstrates that the introduction of the attention challenge mechanism in 

chainlearn incurs minimal expenses. Assuming an interest rate 𝑟 for locking up the stake 𝐺 
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and a gas fee 𝑡 for the validator to respond, the extra cost for implementing this mechanism in 

chainlearn amounts to 𝑟𝐺 + 𝑡𝑝𝑡. By setting 𝐺 =√(𝑡𝐶/𝑟) and 𝑝𝑡 = √(𝑟𝐶/𝑡), the minimal cost is 

at least 2√(𝑟𝑡𝐶). 

For instance, considering the specific case of a GPT-3.5 inference taking 1 second on an 

A100 with a raw computation cost of $0.001 for 1,000 tokens, with 𝑟 = 0.001 and 𝑡 = $1, 

setting 𝐺 = 1 and 𝑝𝑡 = 0.1%, the total cost for implementing the attention challenge per 

chainlearn request amounts to only $0.002. This minimal cost underscores the affordability 

and feasibility of integrating the attention challenge mechanism into chainlearn. 

14. CONCLUSION 

In conclusion, the optimistic approach to on-chain AI and machine learning presents 

significant advantages over existing methods, allowing for the integration of AI capabilities 

with the integrity and security inherent in blockchain technology. Chainlearn emerges as a 

standout solution, offering a cost- effective and efficient ML service when compared to 

zkML. This positions chainlearn as a crucial player in shaping the future of decentralized, 

secure, and transparent AI services. As the landscape of on-chain AI continues to evolve, 

chainlearn remains a pivotal solution, unlocking the full potential of these technologies and 

spearheading a transformative journey towards accessible, secure, and efficient on-chain 

machine learning. 
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