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ABSTRACT:

Classifying Alzheimer’s Disease (AD) using MRI scans is essential for timely detection and
effective treatment planning. This research aims to enhance AD diagnosis by employing
machine learning (ML) models, feature selection methods, and texture-based image analysis.
The study compares the effectiveness of various feature selection strategies and Principal
Component Analysis (PCA) combined with multiple ML algorithms to determine the most
suitable approach for differentiating between Cognitive Normal (CN), Mild Cognitive
Impairment (MCI), and AD cases.

The preprocessing workflow includes N4 bias correction, skull stripping, and linear co-
registration, followed by the extraction of texture features that capture statistical
characteristics of image patterns. Different ML classifiers are then trained and tested on these
features to evaluate their ability to accurately categorize patients. Performance is measured
using multiple evaluation metrics to assess the discriminative power of the models across AD
stages.

The findings highlight that combining ML techniques with feature selection and texture
analysis provides a robust framework for early AD detection and personalized treatment
strategies, offering meaningful implications for clinical use.
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1.INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by the
gradual breakdown of neurons and their connections. This degeneration results in memory
decline, impaired cognition, and difficulties in carrying out everyday activities. As the
disease advances, the brain undergoes structural changes, including hippocampal atrophy and
the enlargement of cerebrospinal fluid-filled spaces [1]. Globally, AD represents a significant
public health challenge, impacting millions of individuals and placing heavy economic and
social burdens on societies [2]. Currently, over 50 million people are living with dementia
worldwide, and this number is projected to rise sharply to approximately 152 million by 2050

[3].

AD progression is generally divided into three stages: Cognitive Normal (CN), Mild
Cognitive Impairment (MCI), and Alzheimer’s Disease. However, achieving reliable
diagnosis, especially at the early stage, remains difficult in clinical practice. In neuroimaging,
texture-based features derived from Magnetic Resonance Imaging (MRI) play a crucial role
in detecting structural variations in brain tissue. These features capture intensity variations
and tissue patterns, which help distinguish healthy from diseased brain regions, providing
essential input for classification models. To further improve classification accuracy, feature
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selection techniques are applied to reduce irrelevant or redundant data. Principal Component
Analysis (PCA) is also employed as a dimensionality reduction method, condensing high-
dimensional data into a more compact form while retaining essential variance.

Machine Learning (ML) has emerged as a powerful tool for medical image analysis, offering
algorithms capable of handling complex datasets and identifying disease-related patterns [6].
Integrating ML with feature selection and dimensionality reduction has the potential to
improve classification performance across different AD stages, supporting timely
intervention and better patient management.

In this research, we conduct a comparative study of various feature selection methods in
combination with PCA and multiple ML algorithms to determine the most effective approach
for AD stage classification. For each method, only the top half of the most relevant features
are retained. This analysis provides valuable insights into optimizing feature selection and
dimensionality reduction strategies for improving AD diagnosis and classification.

2.RELATED WORK

In recent years, computer-aided diagnosis (CAD) systems have become vital in supporting
clinicians, particularly in the detection and classification of Alzheimer’s disease (AD) stages.
Numerous studies have investigated CAD frameworks built on traditional machine learning
(ML) methods, integrating texture analysis and feature selection to improve diagnostic
accuracy. This section summarizes some of the significant contributions in this area.

The study in [7] introduced a texture-feature extraction framework for volumetric medical
imaging. By combining Local Binary Patterns (LBP) with Gray-Level Co-occurrence Matrix
(GLCM) descriptors, the method successfully captured key texture attributes such as local
anisotropy, contrast, homogeneity, and structural patterns. Compared to conventional 2D/3D
features and even deep learning approaches with limited training data, this hybrid approach
achieved superior classification outcomes. Similarly, the authors in [8] proposed a feature
fusion strategy that integrated GLCM, 3D Scale and Rotation Invariant Feature Transform
(3D SIFT), Histogram of Oriented Gradients-Three Orthogonal Planes (HOG-TOP), and
Complete LBP of Sign and Magnitude-Three Orthogonal Planes (CLBPSM-TOP). Using the
OASIS dataset, they classified participants into CN, MCI, and AD categories via Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and an ensemble model, with the
ensemble method demonstrating the best performance.

The work in [9] explored image classification using a Bag-of-Features representation,
comparing Speeded-Up Robust Features (SURF) with global color descriptors. Their
experiments showed that combining SURF features with a cubic SVM classifier achieved the
highest accuracy. In contrast, [6] investigated convolutional neural network (CNN)-based
feature extraction for automated AD classification. CNN models were trained on MRI data,
with Softmax, SVM, and Random Forest classifiers used for evaluation, while the role of
fully connected layers in enhancing classification performance was also examined.

A comprehensive survey in [10] reviewed over 80 studies applying ML to neuroimaging for
AD detection. The findings revealed that SVM, decision trees, and ensemble approaches are
the most frequently employed. The review also highlighted open challenges and
opportunities for future research, such as applying metaheuristic optimization techniques like
whale optimization and gray wolf optimization to improve feature selection.

In [11], the authors examined the robustness and discriminative capacity of various feature
selection approaches for AD diagnosis. Their pipeline combined supervised and
unsupervised methods within a bootstrap sampling-based framework, evaluated using the
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ADNI dataset. Results indicated that balancing stability with discriminability significantly
improves diagnostic performance. Similarly, [12] utilized data from the China Longitudinal
Aging Study (CLAS) to build an interpretable predictive model for AD and MCI. By
integrating five feature selection strategies with nine ML classifiers, the model achieved high
sensitivity, specificity, and overall accuracy. Furthermore, SHapley Additive Explanations
(SHAP) was applied to interpret the influence of individual features at both global and
patient-specific levels, enhancing the clinical transparency of the system.

Finally, [13] explored multiple ML classifiers including decision trees, SVM, and neural
networks, combined with feature selection methods such as Information Gain, Information
Gain Ratio, Gini Index, Chi-Square, and PCA, using the OASIS dataset. Their experiments
demonstrated that selecting the most informative features allowed classifiers to reach up to
90% accuracy, underscoring the importance of feature optimization in AD classification.

3.METHODOLOGY
3.1 Dataset

For this study, a total of 1,026 three-dimensional brain MRI scans were utilized, comprising
an equal distribution of 402 images each for Cognitive Normal (CN), Alzheimer’s Disease
(AD), and Mild Cognitive Impairment (MCI). These T1-weighted structural MRI scans
(1.5T) were obtained from the ADNI database (http://adni.loni.usc.edu/) [14]. Each scan had
a slice thickness of 1.2 mm, with image dimensions of 256 x 256 x 166, and voxel resolution
of 1.0 x 1.0 x 1.2 mm?.

3.2 Preprocessing

The MRI scans obtained from the ADNI database were preprocessed during acquisition to
correct for Gradwarp, B1 non-uniformity, and N3 bias field distortions. Following this, N3
bias-corrected images were subjected to skull stripping using the deepbrain library in Python
[16]. The resulting skull-stripped images were then linearly aligned to the 1 mm MNI152
template space using the FSL-FLIRT tool [17].

3.3 Feature Extraction

Feature extraction plays a vital role in highlighting the most informative properties of
medical images, which is particularly important for disease classification tasks. In this study,
we employed the GLCM method to derive texture-based features from MRI scans.

GLCM works by examining the spatial relationship between pixels within an image,
quantifying how often pairs of pixels with specific intensity values occur in a given spatial
configuration. Through this analysis, it generates a set of texture descriptors such as energy,
homogeneity, contrast, entropy, correlation, and dissimilarity. These features provide
valuable information about the underlying texture, including aspects like structural
uniformity, similarity, intensity variations, randomness, pixel dependency, and localized
changes in image patterns [18,19].

3.4 Feature Selection

Feature selection is a critical step in machine learning (ML), as it reduces dimensionality,
improves computational efficiency, enhances model accuracy, and increases interpretability.
In this study, we explored several feature selection strategies, including statistical tests,
mutual information measures, dimensionality reduction methods, and embedded ML models
such as tree-based classifiers and ensemble approaches.
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1. Analysis of Variance (ANOVA): A statistical approach used to detect significant
differences between group means. Within feature selection, ANOVA evaluates the
discriminative power of features by comparing the variance across different groups to
the variance within groups. Features with higher F-statistics are considered more
influential [22].

2. Chi-Square Test: A method to evaluate the dependency between categorical features
and the target class. Features yielding high Chi-Square scores indicate stronger
associations with the target variable, making them more valuable for classification
tasks [23].

3. Mutual Information Classifier (MICIF): Measures the degree of mutual
dependence between attributes and the target. Features with higher mutual

information values are identified as more predictive and relevant for classification
[24].

4. Principal Component Analysis (PCA): A dimensionality reduction technique that
projects high-dimensional data into a lower-dimensional space while retaining
maximum variance. It produces new uncorrelated variables, called principal
components, that capture the essential structure of the dataset [25].

5. K-Nearest Neighbors (KNN): A non-parametric algorithm that can be used for
feature evaluation by analyzing how effectively features contribute to classification
accuracy based on neighborhood similarity [26].

6. Decision Tree Classifier (DTC): Selects features by splitting nodes according to
criteria such as Gini impurity or information gain. Features chosen at higher levels in
the tree are typically more significant [25].

7. Extra Trees Classifier (ETC): An ensemble method that constructs multiple
randomized decision trees. Feature importance is determined by the average impurity
reduction achieved across all trees [27].

8. Random Forest Classifier (RFC): A bagging-based ensemble algorithm that
aggregates multiple decision trees. Feature importance is computed by averaging the
decrease in impurity contributed by each feature across the forest [28].

9. Extreme Gradient Boosting (XGBoost, XGB): A gradient boosting framework
known for its efficiency and performance. It assesses feature importance using
metrics such as gain (improvement brought by a feature), cover (frequency of usage
in splits), and weight (number of times a feature is used) [29].

By leveraging this diverse set of feature selection methods, our objective is to isolate
the most informative features from the dataset, thereby boosting the classification
performance of Alzheimer’s Disease (AD) stage prediction models.

3.5 Machine Learning Algorithms

To evaluate the classification task, several ML algorithms were employed, each offering
unique strengths. The K-Nearest Neighbors (KNN) algorithm classifies samples based on
the majority label among their £ closest neighbors, making it an intuitive similarity-based
method [26]. The Decision Tree Classifier (DTC), on the other hand, hierarchically
partitions data using feature-based splits, where internal nodes represent attribute tests and
leaves indicate class outcomes [30]. Building on this, the RFC aggregates multiple decision
trees to improve prediction robustness and reduce overfitting [28]. Ensemble boosting
approaches, including the Gradient Boosting Classifier (GBC) [31] and Adaptive Boosting
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(AdaBoost) [32], sequentially construct weak learners, with each new tree correcting the
errors of previous models. The CatBoost Classifier (CBC) further enhances gradient
boosting by efficiently managing categorical features and delivering high-performance
results [33]. Probabilistic methods such as Gaussian Naive Bayes (GNB) assume
independence between features and apply Bayes’ theorem to make predictions efficiently
[34]. The Support Vector Machine (SVM) identifies optimal hyperplanes in a high-
dimensional space to maximize class separation [35], while the Multi-Layer Perceptron
(MLP), a type of feedforward artificial neural network, captures complex, non-linear patterns
through its multiple layers of interconnected neurons [36].

4. RESULTS AND DISCUSSION
4.1 Evaluation Metrics

Multiple evaluation metrics were employed to assess the performance of the classification
models. Accuracy represents the ratio of correctly predicted instances to the total number of
predictions, providing an overall measure of performance. The ROC-AUC score reflects the
model’s ability to differentiate between classes, with the area under the ROC curve serving
as an indicator of classification quality. Precision measures the proportion of correctly
identified positive cases out of all predicted positives, emphasizing reliability in detecting
true positives. Recall (Sensitivity) calculates the fraction of correctly predicted positive cases
among all actual positives, showing how effectively the model captures relevant instances.
Finally, the F1-Score, defined as the harmonic mean of precision and recall, offers a balanced
metric that accounts for both false positives and false negatives, giving a more
comprehensive performance evaluation.

4.2 Performance Comparison

From the comparative analysis, several important observations can be made. Tree-based
models, including RFC and ETC, consistently outperformed other methods across most
evaluation criteria. Notably, ETC achieved the best overall results highest accuracy, ROC-
AUC, precision, recall, and Fl-score, particularly when combined with PCA and its own
feature selection mechanism. Boosting algorithms, such as GBC and XGB, also delivered
strong results, with XGB standing out for its superior ROC-AUC performance, reflecting its
ability to effectively separate different classes. Furthermore, the study shows that feature
selection techniques like ANOVA and MICIF significantly improved the performance of
complex classifiers such as GBC and XGB. Selecting the top 50% of features proved
effective, striking a balance between dimensionality reduction and preserving essential
discriminative information.

Selecting an appropriate combination of ML algorithms and feature engineering approaches
is essential for maximizing classification accuracy. In this section, we present a comparative
evaluation of various ML models on the AD dataset, integrating results obtained from
different feature selection methods. The performance of the models was measured using
standard evaluation metrics, including accuracy, ROC-AUC, precision, recall, and F1-score.
Table I reports these outcomes across the employed feature selection techniques,
emphasizing the influence of feature reduction on the classifiers’ ability to differentiate
between AD stages.

5. CONCLUSION

This research highlights the effectiveness of different ML algorithms and feature selection
techniques in classifying AD stages. Ensemble and tree-based approaches such as Random
Forest, Gradient Boosting, and XGBoost consistently outperformed other methods, achieving
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higher accuracy, ROC-AUC, precision, recall, and F1-scores. The study also emphasizes the
critical role of feature selection, with PCA and MICIF contributing notable improvements in
performance. However, certain limitations should be acknowledged. The dataset may not
comprehensively capture the full variability of AD progression, and incorporating additional
clinical or demographic variables could enhance predictive power. Furthermore, applying
advanced hyperparameter tuning strategies could yield further optimization of the models.
For future work, exploring deep learning architectures, particularly CNNs, may provide
deeper insights by capturing complex structural patterns present in neuroimaging data.

Table 1. Result of different Ml algorithms based on various feature selection methods

Feature
selection
method

ANOVA

KN | DT | GN | SV ML | RF | GB | XG | AD | ET
Model N C B M | P C C B B C CBC
45. | 56. | 42. | 56. | 42. |56. | 55. | 62. |39. | 59.
Accuracy |62 68 |39 |88 39 |68 |76 |21 63 |90 |52.07
ROC-AUC |66. |67. |59. |73. |59. [ 75. |72. | 77. |61. |77.
Score 31 44 |66 |94 |27 |58 |45 |98 |94 |40 | 69.38
46. | 56. | 41. | 56. | 42. |56. | 55. | 62. | 40. | 59.
Precision 78 73 85 87 |31 50 |48 |47 50 |74 |52.13
45. | 56. | 42. | 56. | 42. |56. | 55. | 62. |39. | 59.
Recall 47 |59 06 |83 |26 |61 |64 16 |57 |81 |52.04
45. | 56. |139. |56. | 41. |56. | 55. | 62. |39. | 59.
F1 Score 18 | 65 13 |75 (99 41 |52 13 |79 |74 |52.07
50. 1 59. | 45. [ 61. |46. | 61. | 59. | 66. |45 | 64.
Mean Scores | 97 |38 |76 11 [49 |29 80 |20 |46 |20 |5641

Feature selection PCA
method
KN DT | GN | SV ML | RF | GB | XG | AD | ET | CB
Model N C B M P C C B B C C
44. | 51. | 46. | 56. | 47. |64. |61. | 63. |45. | 78. |50.
Accuracy 23 61 08 88 92 05 29 13 16 80 23

61. | 63. |67. |70. |65 |8l. |78. |83 |67. |89. | 67.
ROC-AUC Score |96 |66 |42 |90 |11 |65 |8 |71 05 |49 |20
45. | 51. [ 46. |57. [47. [ 64. | 61. | 62. |45 | 78. |50.

Precision 27 |52 (34 108 |64 |11 |34 |8 |22 |91 |29
44. | 51. [ 45. |56. [47. [ 63. |61. | 63. |45 | 78. |50.

Recall 16 |55 |91 |8 |81 |99 |27 |01 |22 |69 |15
43. | 51. [ 45. | 56. [47. [ 63. |61. | 62. |45 | 78. |50.

F1 Score 63 132 |45 |65 (68 |9 |18 |89 |09 65 |21

48. | 54. | 51. | 60. |52. | 68. |65 |68. |50. |8l. |54.
Mean Scores 77 |53 [32 |38 109 44 |67 |15 |63 46 |48
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Feature selection ETC
method
KN DT | GN | SV ML RF | GB  XG | AD | ET | CB
Model N (o B M | P C C B B C C
41. | 53. |45, | 51. | 43. | 59. |52. |58. [49. |61. |48.
Accuracy 94 192 |62 |38 |78 |91 53 |53 |31 |75 |85

60. 1 65. |60. |67. [ 60. |76. |70. |76. |65 |80. |66.
ROC-AUC Score |75 |51 |68 |19 190 |10 |8 |77 |01 |63 |11

42. | 54. | 46. | 51. [ 43. | 59. |52, |58. |49. |61. |48.

Precision 86 |26 |64 44 |22 83 |60 |56 (9 |74 40
41. | 54. |45 | 51. [43. | 59. |52, |58. 149. |61. |48.

Recall 87 102 |35 |33 |62 |78 |48 |41 |25 |64 |69
41. | 53. | 43. | 51. [43. | 59. |52, |58. |49. |61. |48.

F1 Score 38 |81 |20 |30 31 |65 |49 |26 |33 |54 33

46. | 56. |49. | 55. |47. |63. |57. | 63. |53. |66. |52.
Mean Scores 73 87 04 33 80 87 12 03 40 42 92

Feature selection XGB
method
KN | DT | GN | SV |ML | RF | GB | XG | AD | ET | CB
Model N C B M P C C B B C C
42. 149, 140. |50. |44. |53. |53. |59. |43. |56. |47.
Accuracy 86 31 09 46 24 92 92 91 78 68 93

60. | 62. |58. | 63. 62. |[74. |T72. | T76. |65 |T7. | 66.
ROC-AUC Score |93 |01 |53 |73 |57 (26 |44 |44 |15 |77 |6l

44. | 50. | 41. | 53. [ 44. | 53. | 53. | 60. |44. |56. |48.

Precision 58 |03 |52 |70 |18 |90 |83 |26 |49 |77 | 3l
42. 149. |39. | 50. | 44. | 53. |53. |59. |43. |56. |47.

Recall 8 |35 |8 |35 |15 90 |84 |8 |75 |56 84
42. 149. | 38. |49. |44, | 53. |53. | 59. [43. |56. |47.

F1 Score 95 37 |36 |73 09 |8 |8 |47 |8 |36 |77

47. | 52. |44. | 54. | 48. | 58. | 58. | 64. | 49. |61. | 52.
Mean Scores 83 68 62 40 77 99 50 02 32 89 65
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