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ABSTRACT.

Significant advancements have been achieved in understanding the complex behaviours of
tumor cells and their interactions with the immune system through theoretical, experimental,
and clinical approaches in recent years. These developments have accelerated the
development of crucial methods for treating cancer, including immunotherapy, chemotherapy,
targeted pharmacotherapy, and others. Simultaneously, significant progress has been made in
the fields of analytical and computer modeling, with the aim of understanding clinical
observations. In this paper, we introduces a tumoraASimmune interaction model consisted of
tumor cells, activated T cells, and anti PD-1 drug, represented as three-dimensional Ordinary
differential equation model. We assume the tumor growth to be exponential, due to their
unrestrained growth in the absence of an immune response and drug therapy. In the absence
of drug application, the model has a tumor-free equilibrium and maximum one tumorous
equilibrium . We further discussed the stability analysis of the equilibrium and conducted
numerical simulations to validate the obtained findings.
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1. INTRODUCTION

An equation comprises one or more functions with their derivatives, is regarded to be a
differential equation. Now a days, the differential equations are used to study biology, cancer
modelling, physics, engineering, heat flow, population growth and so on. The primary
motivation behind solving numerous differential equations is to acquire profound
understanding of the fundamental physical processes, that are represented by the equations.
The fact that even the most straightforward equations resemble practical physical models and
contributes to our understanding of differential equations.

To comprehend mathematical models effectively, a solid grasp of stability and instability is
crucial, as expounded by. While linear equations are suitable for many applications, nonlinear
equations are indispensable for understanding the majority of real-world phenomena.
However, interpreting nonlinear equations is generally more challenging than linear ones,
leading to numerous unique and complex scenarios.

In situations where a local solution is sufficient, such as for a limited time period or specific
parameter values, nonlinear equations can often be approximated through linearization
techniques utilizing the jacobian matrix. A diverse range of literature exists that elucidates
physical and biological phenomena through the application of nonlinear ordinary differential
equations

Differential equations are essential tools in modeling complex biological systems, such as
tumor growth and its interactions with the immune system and therapies. This paper presents
a three-dimensional differential equation model that focuses on tumor-immune interactions.
The model includes three main components: tumor cells, activated T cells, and an anti-PD-1
drug, which is an immunotherapy used to inhibit certain pathways that tumors use to evade
the immune response.
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The model is described as follows:
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where  G(t)and E(t)
indicates the population densities of tumor cells and active T cells at the time t, respectively.
C(t) indicates the anti PD-1 treatment at time t and r > 0 is the pace of tumor growth in cells,
n > 0 is tumour cell death rate by T cells where M > 0 and N > 0 indicates the activation rate
of naive T cells by IL-12 and the explosive growth rate of T cells caused by IL-12 ,
respectively. The mortality rate of T cells is dE > 0. The function

(] . A-P(E’+ acG) ) ! |
Ko

reflects the reduction in the activation of T cells and proliferation by PD-1-PD-L1 complex,
where aG > 1 is the ratio of expressions of PD-L1 in tumor cells and T cells, whereas KlTQ>O

measures the functions level of inhibition of T cells by PD-1-PD-L1 complex, k > 0 is the
rate of PD-1 expression on T cells. The intravenous, constantly injection is called yC. PD-1
has a oP C rate of binding to anti PD-1. Anti PD-1 naturally deteriorates at a rate of dC . The
function P = (pP — yC)E depicts the frequency of the free PD-1, where pP indicates that there
is a set amount of PD-1 in each activated T cells. PD-1 is depleted at a rate of yC as anti PD-1
is given and the medication binds to PD-1.Firstly, nondimensionalize the model using
following scaling,
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The system (1.1) can be represented as written below, (we will still express t with t):

do
dt $(1-9),
df a + asf
— = - — ayf, .
dt 1+ (1 — €)(azb? + ¢8) al (1.2)
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whereas ay, ay, a3, a4, 6, {, ® all are positive as well as constants.
2. STABILITY ANALYSIS OF MODEL WITHOUT TREATMENT

We initially examine the case in which anti PD-1 therapy is not implemented in order to
better understand the dynamics of the entire system (1.2) and to get insight into the
interaction of the natural tumor immune system. Assume = 0 (which means C = 0 in the
model (1.1)) in the entire system (1.2). Consequently, the no treatment models reduced
structure is as follows
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whereas a, a, a3, a4 are defined in (1.3). We shall only take into consideration the dynamics
of system (2.1) in a closed first quadrant of the (¢, 0) plane due of its biological aspects.
Firstly, we will identify all of the stable situations in order to examine the dynamics of the
system (2.1). Fix
é(1—6) =0,
ay + asf
m — a4 =0,

which results

No(8) = azas#® — (a3 —as)f —a; =0; for ¢ =0,

or (2.2)
B = al+a2_(l+a:])a4: for 6=1.
g

Note that NO(©) = 0
has a single positive root as determined by the relationships between the coefficients and
roots of the third-order algebraic equation, 60. As a result, system (2.1) only has one tumor-
free equilibrium FO = (0, 8), and one tumorous equilibrium. Also,

F= ((P*, 9*):((11 +a2 —ail + a3)a4
into the local stability of the equilibria FO and F*. We linearized the system (2.1) and
calculated the jacobian matrix at equilibrium F(¢o, 0) for the system (2.1):

,1) if and only if a; +a; —(1+a3)as > 0. Now, we want to look

1-60 —
J(F) = ( (a1 + a20)0 B asas0? + 2a1a30 + a6 — as . ) ) (2.3)
(14 a36? + 06)? (1 + a3f? + 06)2 14

Then, we concluded the following results.

Result 1

(1) If a2 < (a3 + 1)a4 — al, then the system (2.1) has F as saddle point.

(2) If a2 > (a3 + 1)a4 —al, then the system (2.1) has F as stable node and F* as saddle point.
Proof: The jacobian matrix (2.3) at FO = (0, 6y) becomes

1—-46, 0
J(F[]) - [:l’.Fl + (J.Qﬂ[])()[) (1.2(3‘305 + 2(1.](130(] — (19
= . - . — a.
(l -+ (';,39{‘)})2 (J. + (1,39(2})2 '
which has two eigenvalues
2 R
)\] =1- 0[], /\-‘2 = —uzuaen + 2(&1(4'.;9;] 42 — g,
(1 + as6)?
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Figure 1. If a, < (a3 + 1)as — al then FO is the saddle point.
by substituting (2) in det(J(F0)), we get
(90 — 1)[:6.1 -+ Q(Iqﬂlﬁéi)
let =
det(J(Fo)) = Mdz = fo(1 + a362)
= G g NG (60) = Na(6o)] (2.4)
Oo(1 +a {H[] No
fo — 1
On the one - (1 + a362 Ny (o). hand,
we posses with

N’0(69) > 0 whereas on the other hand, we get a, < (az + 1)ag —a; €= Ny(1) >0 &= 6y < 1.
Therefore, it is quite easy to visualize that the equilibrium F((0, 0y) is a saddle if a; < (a3 +
l)ag — a;, and if a, > (a3 + 1)ag — al, then 6y > 1, which gives det(J(Fo) > 0. We also possess
with det(J(F0)) = A1A2 and A1 < O,then it is easy to get that A2 < 0. Thus, Fy(0, 6) is stable
node if a; > (a3 + 1)as — a;. At F* = (¢*, 0*), the jacobian matrix will become

(14 a3)ay — (a1 + az)

0
*y . 4
J(F7) = a3 (azay + 2ay + as — ayq)ay
ay + as ai + as
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Figure 2. If a, > (a3 + 1)as — aj, then F is a stable node and F* is a saddle point.
The det of J(F*) is

as[(1 + az)as — (a) + (.'.2)].

det(J(F")) = (a) + az)

Note that det(J(F )) < 0 therefore a; +a; —(a3 + 1)as > 0. Therefore, F* is a saddle point.

3. NUMERICAL SOLUTIONS

In the following section, we will find the numerical solutions of system (1.2). Before
studying numerical solutions firstly we will notice that after nondimensionalize ¢ represents
the population densities of tumor cells at time t, 6 depicts activated cells at time t and depicts
the anti PD-1 treatment at time t.

The model will now be visualized through the use of graphs and phase portraits, which will
be constructed using MATLAB. This visualization process relies on the selection of specific
parameter values for the model.

The numerical solution of the system (1.2) and corresponding phase portrait for different
parameter values are shown as follow:
* InFig3,Ifweassumeal =6,a2=1.2,a3=1.1,a4=4,{=1.3, ® =3, 6 = 3. Where
this set of parameters satisfying the conditions ¢ = ®, a2 < a4.
* In Fig4, If we assume al =0.19,a2 =1.7,a3=0.2,a4=19,{=04, un=1.6, 6 =
1.66. Where this set of parameters satisfying the conditions ® > C.

* InFig.5, If we assume al =0.38, a2 =0.35,a3 =0.51,a4=0.68, {=2.6, 0 =2.1,6 =
2.024. Where this set of parameters satisfying the conditions @ <.

* In Fig.6, If we assume al =0.38, a2 =0.35,a3=0.6,a4 =0.68, (=2.6, n=2.1,0 =
2.0245. Where this set of parameters satisfying the conditions {(2B — 1) <o <{.
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The phase portraits of system (2.1) are shown in Figure 1 and Figure 2, showing the dynamic
behaviour and trajectories of the system throughout time. The findings of Result 2 displayed
in these figures give a visual depiction of the stability, equilibrium points, and general
behaviour of the system under the given circumstances.

The Figure 6, Figure 4, Figure 5, and Figure 3 represent the solution trajectories and solutions
of the system (1.2) with respect to mentioned initial conditions and parameter values.

4. CONCLUSION

In this article, the graphs and phase portraits depicts the change in tumor cells with respect to
time, under the influence of anti drug. Through, this procedure we can see how much drug is
needed for the further improvement and how it is helping in decreasing the tumor cells
because above figures gives us the proper visualize of stability or non-stability in person
condition, where count represents the tumor cells present in human body with respect to time.
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Figure 3. (A) The solution of system (1.2) where initial point is taken as(0.2, 0.2, 0.2), and
(B) Phase portrait of system (1.2) depicts instability.
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Figure 4. (A) The solution of system (1.2) where initial point is taken as (0.2, 0.6, 0.3), and
(B) Phase portrait of system (1.2) depicts asymptotically stability.
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portrait of system (1.2) depicts asymptotically stable.
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Figure 6. (A) The solution of system (1.2) where the initial point is taken as (0.1, 1, 0.85),

and (B) Phase portrait of system (1.2) depicts asymptotically stable.
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