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ABSTRACT 

The prevalence of crop diseases presents a major challenge to global food security and 

agricultural sustainability, causing significant yield losses and economic damage. 

Conventional disease detection methods, which rely on manual inspection, are often 

inaccurate, time-consuming, and impractical for large-scale implementation. While deep 

learning, especially Convolutional Neural Networks, has shown promise in automating 

disease classification, the practical deployment of these models is hindered by high 

computational demands. This study proposes an efficient MobileNetV2-based deep learning 

model tailored for classifying 36 healthy and unhealthy categories across 16 plant species. 

The dataset used in this research combines real-field and lab-controlled images from multiple 

public sources, enhancing the model’s generalizability. The model was trained with six 

different optimizers, and Nadam was identified as the most effective, yielding 93.51% test 

accuracy. To further enhance performance, Optuna-based hyperparameter tuning was 

employed. The fine-tuned model attained 98.82% test accuracy, with precision, recall, and 

F1-score of 0.9882 and ROC AUC of 0.9999, reflecting a 5.68% improvement over the 

baseline model. The findings emphasize the feasibility of deploying a lightweight, high-

performance model for real-time crop disease detection. By offering a scalable and 

computationally efficient approach, this study advances sustainable agriculture, enabling 

timely disease identification and improved crop management. 
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1. INTRODUCTION 

Crop diseases induced by various factors like environmental conditions and pests, severely 

impact agricultural productivity, farmer livelihoods, national economies, and the overall 

global food security. According to the United Nations Food and Agriculture Organization 

(FAO), crop diseases cause up to 40% of global crop production losses annually, making 

them a critical barrier to achieving sustainable agriculture and meeting the nutritional 

demands of a growing global population [1]. These losses not only reduce farmer incomes 

but also affect national Gross Domestic Product (GDP), export potential, and food supply 

chains, emphasizing the pressing need for effective crop disease management strategies [2]. 
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Timely detection and accurate diagnosis of crop diseases are essential to mitigate their 

adverse effects. Farmers usually employ visual analysis techniques based on their knowledge 

and experience to detect diseases. This method is subjective, labor-intensive, and prone to 

diagnostic errors, often resulting in delayed interventions. Such delays result in disease 

spread, increase crop losses, and necessitate greater reliance on chemical inputs, which can 

have long-term environmental consequences [3]. These limitations highlight the urgent need 

for innovative solutions that facilitate early, accurate, and efficient crop disease detection. 

Artificial Intelligence (AI) technologies like Machine Learning (ML), and Deep Learning 

(DL), are increasingly being used for automating disease detection, including crop diseases 

[4-7].  

Among these, Convolutional Neural Networks (CNNs) are widely being employed for their 

ability to extract hierarchical features from images, making them highly effective for plant 

disease classification [8-11]. Several studies have demonstrated that CNN-based models 

achieve high accuracy in identifying crop diseases, establishing them as a cornerstone of 

precision agriculture [12-16]. However, significant challenges remain in deploying automated 

disease detection systems in practical settings, leaving critical gaps in the literature. 

First, most models are computationally heavy (e.g., VGG, ResNet), making them impractical 

for smallholder farms and edge devices. Although lightweight models such as MobileNetV2 

and EfficientNet have been proposed, many studies remain restricted to single-crop disease 

detection [17-20]. For example, Pineda Medina et al. [21] applied MobileNetV2 for potato 

leaf disease detection and achieved high accuracy but focused only on three disease classes. 

Similarly, Rashid et al. [22] used MobileNetV3 for tomato classification in a mobile 

application, but its scope was limited to a single crop and lab-quality images. 

Second, there is a generalizability gap in datasets. Most prior studies rely on lab-controlled 

datasets [23-25], which fail to capture the variability of real-field conditions, including 

background clutter, lighting variations, and overlapping leaves. Studies, such as Lu et al. [26] 

and Tambe et al. [27] that utilized MobileNetV2, emphasize the potential of lightweight 

architectures but also note challenges in robustness when tested in diverse, uncontrolled field 

environments. 

Third, while optimization techniques significantly affect CNN performance, their systematic 

use remains limited. For instance, Dogo et al. [28] observed Nadam’s superiority in 

convergence for CNNs, and Bhuyian et al. [29] showed that Bayesian optimization improves 

performance for lightweight models. Yet, automated hyperparameter tuning frameworks are 

underexplored in multi-crop disease classification tasks, where balancing performance and 

efficiency is critical. 

1.1. Research Hypothesis 

Based on these gaps, this study hypothesizes that: 

𝐻0(𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠):  A lightweight CNN model, fine-tuned with automated 

hyperparameter optimization, does not outperform baseline CNN models in terms of 

classification accuracy and generalizability across multiple crop species. 

𝐻1(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠):  A lightweight CNN model, fine-tuned with automated 

hyperparameter optimization, outperforms baseline CNN models in terms of classification 

accuracy and generalizability across multiple crop species. 

1.2. Research objectives 

This study is guided by the following objectives: 
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1. To develop a lightweight CNN model using transfer learning with MobileNetV2 for 

multi-crop disease classification. 

2. To systematically evaluate optimizers and identify the most effective one for model 

training through comparative experiments. 

3. To apply automated hyperparameter tuning to optimize hyperparameters for 

improved performance. 

4. To validate the proposed model on a comprehensive dataset combining lab-

controlled and real-field images across 36 classes and 16 crop species. 

1.3. Contributions of the study 

Unlike earlier MobileNetV2-based studies [21-22], which are constrained by single-crop 

focus, limited optimization, or exclusive reliance on lab datasets, this study makes the 

following contributions: 

 It proposes a generalized lightweight model capable of classifying diseases across 

multiple crops, moving beyond single-crop limitations. 

 It integrates automated hyperparameter tuning (Optuna) with MobileNetV2, an 

approach underexplored in multi-crop disease detection. 

 It evaluates multiple optimizers under controlled experiments, statistically validating 

performance differences. 

 It utilizes a diverse dataset that combines real-field and lab-controlled images, thereby 

enhancing robustness in practical agricultural settings. 

1.4. Organization of the paper 

The subsequent sections of this paper are structured as follows. Section 2 provides a detailed 

review of the literature on deep learning applications in crop disease detection. Section 3 

describes the methodology employed to develop the proposed model. Section 4 presents the 

results and discusses the findings in relation to existing studies. Finally, Section 5 concludes 

the study and offers directions for future research. 

2. REVIEW OF LITERATURE 

Deep learning has significantly advanced the automatic identification and classification of 

crop diseases. This section reviews the recent literature, organized into four themes: 

lightweight architectures for crop disease detection, transfer learning and multi-crop 

generalization, optimization and automated hyperparameter tuning, and dataset 

considerations. The review emphasizes the need of compact, generalizable, and field-

deployable models. 

2.1. Lightweight architectures for crop disease detection 

Early works in the area of crop disease classification such as Mohanty et al. [30] and 

Ferentinos [15] employed deep CNNs like GoogLeNet and VGG, achieving high accuracies 

(>99%) on PlantVillage [31] dataset. However, these models suffered from high 

computational costs and poor generalization to real-field conditions. To address these issues, 

lightweight CNNs have emerged. 

MobileNet and its successors dominate this space. Fan and Guan [32] and Ullah et al. [33] 

demonstrated MobileNetV2 and ShuffleNetV2 models exceeding 98% accuracy for tomato 

and corn diseases. Duhan et al. [34] proposed RTR_Lite-MobileNetV2, specifically designed 
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for low-resource edge deployment, achieving comparable performance while reducing 

Floating Point Operations Per Second (FLOPs). Similarly, Rashid et al. [22] developed a 

MobileNetV3 variant for tomato leaf disease detection, emphasizing real-time applicability. 

Other variants include EfficientNet and SqueezeNet derivatives. Ali et al. [35] presented an 

ensemble of EfficientNet and ResNet models, reporting >99% accuracy across multiple 

crops, but at the cost of parameter growth. By contrast, Lu et al. [26] proposed MobileNetV2 

modifications that reduced FLOPs while maintaining >99% accuracy. These developments 

highlight the centrality of lightweight CNNs in balancing accuracy with resource constraints. 

2.2.Transfer learning and multi-crop generalization 

Transfer learning has been pivotal in crop disease identification. Pineda Medina et al. [21] 

and Kini et al. [36] leveraged pretrained CNNs for feature extraction, achieving high 

accuracy (>97%) across multiple disease classes. However, these approaches are often single-

crop oriented. 

Recent studies have begun exploring cross-crop and multi-crop generalization. Tambe et al. 

[27] developed a MobileNetV2 based model for classifying diseases in multiple crops, 

achieving an accuracy of 91.98%. Ashurov et al. [37] highlighted transfer learning strategies 

across multiple crop species. These findings align with emerging trends that emphasize not 

just accuracy but cross-species adaptability, which is essential for practical agricultural 

adoption. 

2.3.Optimization and automatic hyperparameter tuning 

Optimizers and hyperparameter tuning significantly influence CNN performance. While 

Adam optimizer [38] is widely used, studies stress the importance of context-specific 

selection. Dogo et al. [28] found Nadam superior in convergence and accuracy, while Saleem 

et al. [39] highlighted the synergy between optimizers and model types, with Adam-Xception 

pairing yielding a 0.9978 F1-score. 

More recently, automated methods have been deployed. Ashwinkumar et al. [40] and 

Bhuyian et al. [29] applied Bayesian optimization for lightweight models for tomato and 

banana disease detection, achieving 96-98% accuracy. These findings reinforce the 

importance of the current study’s integration of Optuna-based tuning in achieving state-of-

the-art performance. 

2.4.Datasets and real-field challenges 

Dataset choice strongly influences model performance. Early reliance on controlled datasets 

(e.g., PlantVillage) yielded inflated accuracies, but failed in uncontrolled field environments 

[15], [30]. To address this, field-based datasets such as PlantDoc [41] and custom multi-crop 

datasets have gained traction. 

Salka et al. [42] surveyed field dataset challenges, including varying lighting, occlusion, and 

mixed symptoms. Ferdi [43] emphasized the benefit of background-removal augmentation to 

reduce noise. Still, most lightweight models remain evaluated on single crops or lab settings 

[21], [27]. 

This study uniquely addresses this limitation by combining both real-field and controlled 

images across 16 crops and 36 classes. Unlike studies like [27], [44], which focus exclusively 

on lab datasets, this study integrates diverse data sources to maximize robustness. 
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2.5.Comparative analysis of existing lightweight models 

To contextualize the proposed approach, Table 1 provides a comparative summary of 

representative lightweight models reported in recent studies, highlighting differences in 

crops, dataset scale, number of classes, model complexity (parameters and FLOPs), and 

performance. 

Table 1. Comparative analysis of existing lightweight CNN models for plant disease 

detection 

 

As shown in Table 1, MobileNetV2 is a widely adopted lightweight backbone. Duhan et al. 

[34] achieved an exceptional accuracy of 99.92% on a large multi-crop dataset, 

demonstrating that MobileNetV2, when carefully augmented, can outperform heavier CNNs 

while maintaining only 1.05M parameters. Similarly, Lu et al. [26] reported strong results 

(99.53%) across 25 PlantVillage classes, though this performance was obtained under 

controlled conditions, limiting its field applicability. Likewise, Tambe et al. [27] highlighted 

Study Model Crop

s 

Datase

t Size 

Cla

sses 

Paramet

ers 

(Millions

) 

FLOPs 

(Millions

) 

Accura

cy (%) 

Remarks 

Duhan 

et al. 

[34] 

Mobil

eNetV

2 

Multi

ple 

crops 

61,486 

images 

39 1.05 526 99.92 Achieved the 

highest accuracy 

with 

augmentation; 

precision, recall, 

and F1 > 

99.85%. 

Pineda 

Medina 

et al. 

[21] 

Mobil

eNetV

2 

Potato 3,000 

images 

3 2.34 – 98.70 Effective in real-

time 

applications 

with small 

dataset. 

Tambe 

et al. 

[27] 

Mobil

eNetV

2 

Multi

ple 

crops 

87,867 

images 

38 – – 91.98 Struggles in 

multi-leaf, crop-

specific disease 

identification. 

Lu et al. 

[26] 

Mobil

eNetV

2 

Multi

ple 

crops 

30,644 

images 

25 0.91 268 99.53 High accuracy 

under controlled 

settings; limited 

field 

applicability. 

Zhu and 

Gao 

[45] 

Shuffl

eNetV

2 

Maize 10,845 

images 

6 0.87 1.75 99.86 High accuracy 

but limited to 

maize; narrow 

disease range. 

Ullah et 

al. [33] 

Custo

m 

CNN 

Toma

to 

10,000 

images 

10 0.69 – 99.34 Extremely 

lightweight, but 

limited by lab-

captured dataset. 
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the challenge of handling complex multi-leaf images as their model was trained using lab-

controlled images with a uniform background. 

In a crop-specific context, Pineda Medina et al. [21] demonstrated the suitability of 

MobileNetV2 for potato disease detection, achieving 98.7% accuracy with just 2.34M 

parameters, making it highly suitable for real-time use. 

Beyond MobileNet, other lightweight models have also been explored. Zhu and Gao [45] 

developed a ShuffleNetV2 model for maize disease classification, achieving 99.86% 

accuracy with only 0.87M parameters and 1.75M FLOPs, but its narrow focus on six maize 

diseases limited generalizability. Ullah et al. [33] proposed a custom lightweight CNN with 

just 0.69M parameters, reaching 99.34% accuracy for tomato leaf diseases, though its 

reliance on lab-captured images reduces its robustness in real-world conditions. 

Overall, these comparisons highlight two consistent trends. First, MobileNetV2 is a dominant 

and versatile lightweight backbone, but its performance depends heavily on dataset diversity 

and robustness to real-field variability. Second, lightweight models such as ShuffleNetV2 

show impressive compactness, but their generalizability across crops and disease types 

remains constrained in the current body of research. 

2.6.Research gaps 

Based on the review of the literature, the following research gaps have been identified. Most 

lightweight models focus on single-crop classification, limiting their usefulness for farmers 

managing diverse crop species [32], [46]. Optimization techniques, though effective for 

single crops, are rarely adapted for the added complexity of multi-crop classification, where 

both accuracy and efficiency must be balanced [29], [47]. Additionally, many models are 

trained on lab-controlled datasets, reducing their robustness in real-field conditions where 

diseases vary with environment and crop type [23], [27], [48]. Transfer learning remains 

underutilized for multi-species classification, with challenges in preserving both performance 

and compactness. 

Together, these gaps highlight the need for research that moves beyond narrow single-crop 

models, integrates both lab and real-field data, adopts systematic optimization techniques, 

and validates improvements through rigorous statistical analysis. Addressing these gaps is 

essential for advancing crop disease detection models that are both accurate and practically 

deployable in resource-constrained agricultural settings. 

3. MATERIALS AND METHODS 

This section outlines the methodology followed to develop a lightweight deep learning model 

for multi-crop disease classification. It covers dataset preparation, model training using 

multiple optimizers, automated hyperparameter tuning, and performance evaluation. An 

overview of the process is illustrated in Figure 1. 
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Figure 1. Overview of research methodology 

3.1.Computational environment 

All experiments were conducted in Python (version 3.11.7) using the TensorFlow deep 

learning framework, with supporting libraries including NumPy, Pandas, Matplotlib, and 

Scikit-learn. Training was executed on a workstation equipped with an NVIDIA RTX 3050 

GPU (6 GB VRAM), 13th Gen Intel(R) Core (TM) i7-13700HX (2.10 GHz) (16 cores, 2.1 

GHz), and 16 GB RAM, running a 64-bit Windows 11 operating system with CUDA 11.8 for 

GPU acceleration. 

3.2.Dataset curation 

To support generalization across crop types and environmental conditions, a diverse dataset 

was created by combining images from five publicly available sources: PlantVillage [31], 

PlantDoc [41], Bean Leaf Diseases Dataset [49], Coffee Leaf Diseases Dataset [50], and 

Banana Leaf Diseases Dataset [51]. These datasets represent a mix of real-field and lab-

controlled images across 16 plant species and 36 healthy/diseased classes. The final curated 

dataset comprised 56,044 images, split into training (39,214), validation (7,843), and testing 

(16,830) subsets using a stratified 70-30 split, followed by an 80-20 training-validation split. 

Sample images from the dataset are shown in Figure 2. 

 

Figure 2. A sample of images from the combined dataset 

3.3.Data preprocessing and class imbalance handling 

The curated dataset exhibited class imbalance, with some disease classes significantly 

underrepresented. To address this, data augmentation was applied to minority classes using 

techniques such as random rotations, flips, shifts, zooming, and shear transformations. This 

increased sample size and also improved the model’s robustness to real-world variations. 

Additionally, class weights were computed based on inverse class frequency to ensure fair 

learning across all categories. All images were resized to 224 × 224 pixels and normalized to 

a [0, 1] scale to meet the input requirements of the proposed model. 
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3.4.Model architecture 

MobileNetV2 was selected as the backbone model for its strong balance between accuracy 

and efficiency, making it suitable for deployment in resource-constrained agricultural 

environments. Unlike other lightweight models, MobileNetV2 integrates features such as 

inverted residuals and linear bottlenecks, offering an optimal trade-off between performance 

and complexity. To contextualize this choice, Table 2 provides a comparison with other 

widely used lightweight architectures, including MobileNetV1, EfficientNetB0, 

NASNetMobile, ShuffleNet, and SqueezeNet. The comparison includes parameter count, 

computational complexity (FLOPs), and Top-1 ImageNet accuracy, which together highlight 

the trade-offs between efficiency and predictive performance. As shown, MobileNetV2 

achieves higher accuracy than most models of comparable size and complexity, reinforcing 

its suitability as the foundation for the present study. 

Table 2. Comparison of MobileNetV2 with other lightweight models 

Model Paramete

r count 

FLOPS 

(Million

s) 

Top-1 

Accuracy on 

ImageNet 

Key features Suitability for 

this study 

MobileNetV

2 

~3.4M ~300 ~ 71.8% Inverted 

residuals, linear 

bottlenecks 

High efficiency 

and accuracy 

for multi-class 

classification 

MobileNetV

1 

~4.2M ~569 ~ 70.9% Depthwise 

separable 

convolutions 

Lacks advanced 

features of 

MobileNetV2 

EfficientNet

B0 

~5.3M ~390 ~ 76.7% Compound 

scaling 

Higher 

computational 

cost 

NASNetMo

bile 

~5.3M ~564 ~ 74.0% Neural 

architecture 

search 

Complex and 

less efficient 

ShuffleNet ~1.4M ~150 ~ 69.4% Group 

convolutions, 

channel shuffling 

Lower accuracy 

on diverse 

datasets 

SqueezeNet ~1.2M ~831 ~ 57.5% Fire modules Compact but 

insufficient for 

complex tasks 

 

To tailor MobileNetV2 for the 36-class crop disease classification task, a customized 

classification head was added. The original fully connected layers were replaced with a 

global average pooling layer, followed by a dropout layer (rate = 0.2) and a dense softmax 

layer for multi-class output. The base MobileNetV2, initialized with ImageNet weights, was 

frozen during initial training to retain its learned features. The customized model architecture 

is illustrated in Figure 3. 
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Figure 3. Customized baseline MobileNetV2 model architecture 

3.5.Optimizer selection 

To ensure optimal performance of the proposed model, the MobileNetV2 architecture was 

trained using six different optimizers: Adam, Stochastic Gradient Descent (SGD), RMSprop, 

Adagrad, Nadam, and Adamax. These optimizers were chosen for their established 

effectiveness in deep learning applications and their diverse approaches to gradient-based 

optimization. Each optimizer was applied using its default learning rate settings to maintain 

consistency, and the model was trained with the configuration setting (epochs=30, steps per 

epoch=300, validation steps=100). For each trained baseline model, performance metrics 

were recorded, providing a basis for comparing the effectiveness of the different optimizers. 

The need for comparing these optimizers arises from the fact that their performance can vary 

significantly based on the nature of the dataset and the architecture of the model. Optimizers 

not only influence convergence speed but also impact the ability of the model to generalize 

well to unseen data. In the context of this study, selecting the right optimizer was particularly 

critical, as the classification task involved a diverse dataset of crop disease images, requiring 

high accuracy, precision, recall, and generalization capacity. 

By systematically evaluating the performance of the model trained with each optimizer over 

the specified training conditions, the most suitable optimizer for the study was identified 

based on a range of evaluation metrics. 

3.6.Automatic hyperparameter tuning 

Following optimizer selection, key hyperparameters, dropout rate and learning rate, were 

tuned using Optuna [52], an efficient hyperparameter optimization framework. Automatic 

tuning was chosen over manual or grid search methods to reduce bias and improve efficiency. 

In this study, dropout rate and learning rate were targeted, as these are critical factors 

influencing model generalization, convergence stability, and training dynamics. 

Optuna was configured to maximize the weighted F1-score on the validation set as the 

objective function, ensuring that improvements were not limited to accuracy alone but 

extended to balanced classification performance across all classes. For each trial, 

hyperparameter values were sampled by Optuna within the ranges summarized in Table 3. 

Table 3. Search space for automatic hyperparameter tuning 

Parameter Range Sampling Strategy 

Dropout rate 0.1 to 0.9 (step=0.1) Uniform 

Learning rate 10
-6

 to 10
-2

 Log Uniform 

The learning rate was sampled on a logarithmic scale between 1e⁻⁶ and 1e⁻², while dropout 

rate was sampled uniformly between 0.1 and 0.9 in increments of 0.1. The Optuna 

hyperparameter optimization study was performed with a fixed random seed of 42 to control 

trial sampling. A total of 30 trials were executed. Each trial consisted of the following steps: 
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1. Data was split into training and validation sets (80:20, stratified). 

2. Image augmentation (rotation, shifting, shearing, zooming, flipping) was applied to 

improve robustness. 

3. A MobileNetV2 model, fine-tuned with a Nadam optimizer, was trained with the 

candidate hyperparameters. 

4. Training incorporated early stopping (patience = 20) and ReduceLROnPlateau (factor 

= 0.5, patience = 3, minimum learning rate = 1e⁻⁶) to prevent overfitting and improve 

convergence. 

5. Class weights were computed to mitigate imbalance across crop disease classes. 

6. The model was evaluated on the validation set, and the weighted F1-score was 

returned to Optuna as the performance metric. 

Bayesian optimization with pruning was employed by Optuna, and poorly performing trials 

were terminated early to reduce computation. After completing 30 trials, the best-performing 

configuration was selected based on the highest validation weighted F1-score. 

3.7. Model development and performance evaluation 

After selecting the best-performing optimizer and identifying the optimal hyperparameters 

(learning rate and dropout rate), the MobileNetV2 model was trained with these 

configurations to achieve optimal performance. The model was trained for 50 epochs with 

300 steps per epoch for the training set and 100 validation steps for the validation set. Early 

stopping was implemented to prevent overfitting and ensure the best model weights were 

retained. Additionally, a learning rate reduction mechanism was incorporated. Class weights 

were calculated and applied during training to address the class imbalance in the dataset, 

ensuring that minority classes contributed proportionately to the model's learning process. 

To comprehensively assess the performance of the proposed model and the baseline models 

created using different optimizers, a diverse set of evaluation metrics was employed on the 

test dataset. Since the dataset exhibited class imbalance, weighted precision, weighted recall, 

and weighted F1-score were calculated along with the accuracy metric. The equations of 

these metrics are listed in Table 4. 

Table 4. Metrics for performance evaluation 

Metric Equation Description 

Accuracy     𝑁

       𝑁   𝑁
 

TP, TN, FP, and FN denote True Positives, True 

Negatives, False Positives, and False Negatives, 

respectively 

Weighted 

Precision    
∑ 𝑁    
 
  1

∑ 𝑁 
 
  1

 

 

𝑁  is the number of instances in class i,    is the 

precision for class i, and C is the total number of 

categories 

Weighted Recall 
   

∑ 𝑁    
 
  1

∑ 𝑁 
 
  1

 
   is the recall for class i. 

Weighted F1-

score 
   

 
∑ 𝑁     
 
  1

∑ 𝑁 
 
  1
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In addition to these metrics, the overall weighted Receiver Operating Characteristic- Area 

Under Curve (ROC AUC) score was calculated using the one-vs-rest (OVR) method, as per 

the multi-class classification nature of the current study. This metric evaluates the model's 

ability to distinguish between classes. A deeper analysis of the model's performance was 

conducted by examining the confusion matrix. Additionally, the performance of the baseline 

models and the fine-tuned proposed model was statistically tested. 

3.8 Statistical Analysis 

To rigorously evaluate model performance, multiple statistical tests were incorporated into 

the experimental design. The goal was twofold: 

1. To examine whether the choice of optimizer significantly influenced the baseline 

MobileNetV2 performance 

2. To validate whether hyperparameter tuning with Optuna led to statistically significant 

improvements over the baseline models. 

For the baseline analysis, MobileNetV2 model with each of the six optimizers was trained 

with different random seeds (42, 123, 999). This repeated-seed design has been recommended 

in prior deep learning studies to account for stochastic variations during training [53-54]. The 

resulting test accuracies were analyzed using a one-way repeated measures ANOVA to 

determine whether performance differences among optimizers were statistically significant. 

Because ANOVA assumes normality and equal variances, the non-parametric Friedman test 

was additionally applied, as suggested in comparative deep learning research [55], to provide 

a distribution-free confirmation. 

Following the baseline evaluation, the tuned proposed model- optimized using Optuna for 

dropout rate and learning rate- was compared against its baseline counterpart. Statistical 

validation was performed using a paired t-test. To quantify the magnitude of improvements, 

Cohen’s d was calculated as an effect size measure, where values above 0.8 indicate large 

effects [56]. Additionally, 95% confidence intervals (CIs) for the mean difference in accuracy 

were computed to provide an interval estimate of the performance gain. 

4. Results and Discussion 

This section presents a comprehensive evaluation of the proposed fine-tuned MobileNetV2 

model, including its classification performance, computational efficiency, and a comparative 

analysis with existing lightweight models and prior studies in the literature. 

4.1.Optimizer comparison results 

The baseline MobileNetV2 model was trained using six different optimizers- Adam, SGD, 

RMSprop, Adagrad, Adamax, and Nadam- and their performances were compared based on 

key evaluation metrics such as test accuracy, weighted precision, weighted recall, weighted 

F1-score, and overall ROC AUC. The results are summarized in Table 5, which presents a 

comprehensive comparison of the optimizers' effectiveness in training the model. The best 

performing optimizer is highlighted in boldface in Table 5. 

Table 5. Baseline MobileNetV2 model performance comparison using different 

optimizers 

Optimizer Test Accuracy Weighted 

Precision 

Weighted 

Recall 

Weighted 

F1-score 

Overall 

ROC AUC 

Adam 92.43% 0.9149 0.9219 0.9146 0.9979 

SGD 91.72% 0.9038 0.9161 0.9059 0.9974 
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RMSprop 92.46% 0.9125 0.9189 0.9127 0.9973 

Adagrad 83.31% 0.8159 0.8195 0.8101 0.9908 

Adamax 92.37% 0.9102 0.9216 0.9133 0.9976 

Nadam 93.51% 0.9231 0.9333 0.9257 0.9982 

From the results in Table 5, Nadam emerged as the best-performing optimizer, achieving the 

highest test accuracy (93.51%), weighted precision (0.9231), weighted recall (0.9333), and 

weighted F1-score (0.9257). Additionally, its overall ROC AUC of 0.9982 further highlights 

its superior performance in distinguishing between classes across the test dataset. 

The superior performance of Nadam can be attributed to its incorporation of Nesterov 

momentum on top of Adam's adaptive gradient methodology. Nesterov momentum predicts 

the future position of the gradient and adjusts accordingly, which results in smoother and 

faster convergence. This capability is particularly advantageous in complex tasks like multi-

class crop disease classification, where the loss landscape can be non-convex and noisy. 

Nadam's ability to maintain stability while achieving faster convergence is evident in its 

higher accuracy. 

In contrast, while optimizers like Adam and RMSprop performed well, they lacked the 

additional momentum enhancements provided by Nadam, which likely explains their 

marginally lower performance. SGD, while effective in some cases, showed slower 

convergence due to its lack of adaptiveness, evident in its slightly lower accuracy (91.72%). 

Adagrad, which adapts learning rates individually for parameters, underperformed 

significantly (test accuracy: 83.31%), likely due to its tendency to diminish learning rates 

excessively during training, leading to suboptimal convergence. 

The results also highlight that Adamax closely followed Nadam in performance but fell 

slightly short in terms of test accuracy and weighted F1-score. This indicates its effectiveness 

but suggests a limitation in convergence speed compared to Nadam. Nadam's superior 

handling of the optimization process justifies its selection for further training of the 

MobileNetV2 model. 

4.2.Results of automatic hyperparameter tuning 

The hyperparameters, learning rate and dropout rate, were optimized using Optuna, which 

identified the best values as a learning rate of 0.0001837 and a dropout probability of 0.2. 

The model was trained using this best found hyperparameter values. The model's 

performance before and after hyperparameter tuning is detailed in Table 6, along with the 

percentage change in each evaluation metric. 

Table 6. Model performance before and after hyperparameter tuning 

Metric Before tuning After tuning Percentage change (%) 

Test Accuracy 93.51% 98.82% +5.68 

Test Loss 0.2234 0.0442 -80.21 

Weighted Precision 0.9231 0.9883 +7.06 

Weighted Recall 0.9333 0.9882 +5.88 

Weighted F1 Score 0.9257 0.9882 +6.75 

Overall ROC AUC 0.9982 0.9999 +0.17 

It is apparent from Table 6 that hyperparameter tuning resulted in a significant improvement 

in model performance across all metrics. The test accuracy increased from 93.51% to 

98.82%, representing a substantial 5.68% enhancement. Similarly, the test loss dropped 

dramatically by 80.21%, indicating more stable and accurate predictions with reduced errors. 
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Improvements in weighted precision, recall, and F1 score highlight enhanced class-wise 

prediction capability, reducing misclassification across all categories. The slight increase in 

overall ROC AUC (0.17%) suggests near-perfect separability between classes, which is 

crucial for multi-class classification tasks. 

The optimized learning rate and dropout probability played pivotal roles in achieving these 

improvements. The fine-tuned learning rate ensured smoother and more precise gradient 

updates, allowing the model to converge effectively without overshooting the minima. The 

optimized dropout rate balanced regularization and overfitting control, particularly important 

for the diverse and complex crop disease dataset used in this study. 

The substantial improvements further validate the efficacy of automatic hyperparameter 

optimization techniques like Optuna, which streamline the search for ideal parameters 

compared to manual tuning or grid search. By systematically exploring the parameter space, 

Optuna identified hyperparameters that maximized performance while maintaining 

computational efficiency. To validate the performance improvements of the proposed model, 

statistical analysis was conducted, the results of which are presented in the next section. 

4.3.Results of statistical analysis 

To evaluate whether the choice of optimizer had a statistically significant effect on model 

performance, test accuracies of baseline MobileNetV2 models trained with six different 

optimizers were compared across three independent runs for each optimizer. The mean and 

standard deviation of test accuracies are summarized in Table 7. Among all optimizers, 

Nadam achieved the highest average accuracy (90.58%), followed closely by SGD (88.20%), 

while Adagrad produced the lowest performance (78.54%). 

Table 7. Performance of MobileNetV2 models across six optimizers 

Optimizer 

Test Accuracy (%) 

Standard 

Deviation Seed 42 Seed 123 Seed 999 

Mean 

Accuracy 

Adagrad 83.26 76.19 76.17 78.54 0.0334 

Adamax 91.85 88.19 57.75 79.26 0.1529 

RMSprop 92.54 89.07 75.39 85.67 0.0740 

Adam 93.42 83.97 83.87 87.09 0.0448 

SGD 91.40 88.24 84.96 88.20 0.0263 

Nadam 93.80 89.95 88.00 90.58 0.0241 

A one-way repeated measures ANOVA was conducted to assess whether these observed 

differences were statistically significant. The results indicated no significant differences 

among optimizers, F(5,12) = 0.87, p = 0.528. To further validate this finding, the non-

parametric Friedman test was applied, yielding χ² = 9.48 with p = 0.092, which similarly 

failed to demonstrate statistical significance. Thus, as shown in Table 7, although Nadam 

outperformed the other optimizers on average, the improvements were not statistically 

significant. This outcome is likely influenced by the small sample size of three runs per 

optimizer, which limits the power of the statistical tests. Future work could incorporate a 

larger number of independent runs to provide higher statistical power and more robust 

conclusions. 

Having established Nadam as the best-performing optimizer in terms of mean accuracy, the 

next stage of analysis compared the baseline Nadam model against its tuned counterpart 

obtained through Optuna-based hyperparameter optimization. The test results from three 
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independent runs with different seeds (42, 123, 999) are presented in Table 8. The tuned 

Nadam model consistently outperformed the baseline, with accuracies exceeding 98.74% 

across all runs. 

Table 8. Performance comparison of baseline vs. tuned Nadam models (mean ± 

standard deviation across three runs) 

Model Test Accuracy (%) 

Baseline Nadam 90.58 ± 0.030 

Tuned Nadam (Optuna) 98.74 ± 0.001 

To statistically validate these improvements, paired t-tests were applied. The paired t-test 

demonstrated that the tuned Nadam model significantly outperformed the baseline (t = 5.04, p 

= 0.037), with a 95% confidence interval for the difference of [0.01, 0.15]. This suggests that 

the accuracy improvements introduced by hyperparameter optimization are statistically 

meaningful. Importantly, the effect size estimated using Cohen’s d was 2.91, which 

corresponds to an extremely large effect, reinforcing the practical importance of the observed 

improvements. 

These findings support rejection of the null hypothesis (H₀) and provide evidence in favor of 

the alternative hypothesis (H₁), namely that automated hyperparameter optimization improves 

classification accuracy and generalizability across multiple crop species. The statistically 

significant improvements suggest that farmers and extension workers could rely on the model 

to provide more consistent diagnostic outputs, even when deployed on diverse data sources. 

4.4.Proposed model performance analysis 

In order to obtain deeper insights into the tuned-model performance, its accuracy and loss 

plots, and confusion matrix were analyzed. 

The accuracy and loss curves of the proposed model demonstrate consistent performance 

across training and validation phases (Figure 4). The training and validation accuracy 

steadily improved during the initial epochs, surpassing 90% within the first 10 epochs. Both 

training and validation accuracy converge close to 99% towards the later epochs, indicating a 

high-performing model. The training and validation loss exhibited a rapid decline during the 

early epochs, stabilizing at minimal values (below 0.05) after approximately 20 epochs. 

Notably, the validation loss closely follows the training loss curve, suggesting no overfitting 

or underfitting issues. This minimal gap between training and validation accuracy/loss 

throughout the training process highlights the model's ability to generalize well to unseen 

data. 
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Figure 4. Accuracy and loss plots of the proposed model 

The proposed model's confusion matrix offers a thorough analysis of the classification 

performance of the model (Figure 5). The concentration of predictions along the diagonal 

reflects the model's strong generalization capability and its ability to discriminate between 

distinct classes effectively. This is particularly notable given the diversity of the dataset, 

which includes healthy and diseased leaves from multiple crops with varying visual 

characteristics. 

 

Figure 5. Confusion matrix of the proposed model 

For most classes, including high-support categories such as Orange Haunglongbing, Soybean 

Healthy, and Tomato Yellow Leaf Curl Virus, the model achieved nearly perfect predictions, 

with minimal or no misclassifications. Classes with lower support, such as Bean Angular 
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Leaf Spot and Strawberry Healthy, also exhibited strong performance, with very few 

misclassifications observed. 

The off-diagonal misclassifications are sparse and primarily limited to visually similar classes 

or classes with shared morphological features. For instance, Tomato Early Blight and Tomato 

Late Blight show minor confusion, as a few instances of the former were misclassified as the 

latter. Similarly, some misclassifications occurred between Apple Scab and Apple Black Rot, 

likely due to overlapping symptoms such as leaf discoloration. 

The model's ability to handle high-support and low-support classes with consistent accuracy 

demonstrates the efficacy of the Nadam optimizer and the tuned hyperparameters. These 

elements contributed to the balanced learning of features across classes, preventing 

overfitting to dominant categories and underrepresentation of minority ones. 

This level of class discrimination is essential in practice, as visually similar diseases often 

require distinct treatments; hence, misclassification could lead to costly or ineffective 

interventions. 

4.5.Computational efficiency of the proposed model 

The computational efficiency of the proposed model demonstrates significant improvements 

in both parameter count and FLOPs. Specifically, the proposed model has approximately 2.3 

million trainable parameters and requires ~599 million FLOPs for inference. A comparative 

analysis of these values against other well-known lightweight models, presented in Table 9, 

reveal the following insights. 

Table 9. Computational efficiency of proposed model versus other lightweight models 

Model Parameter count FLOPS (Millions) 

MobileNetV2 ~3.4M ~300 

MobileNetV1 ~4.2M ~569 

EfficientNetB0 ~5.3M ~390 

NASNetMobile ~5.3M ~564 

ShuffleNet ~1.4M ~150 

SqueezeNet ~1.2M ~831 

Proposed Model ~2.3M ~599 

Compared to MobileNetV1, the proposed model reduces parameter count by ~45% while 

requiring slightly more FLOPs. It is also more parameter-efficient than EfficientNetB0 and 

NASNetMobile (~57% fewer parameters), both of which are computationally demanding. 

Despite having higher FLOPs than MobileNetV2, the proposed model outperforms it in 

classification performance. The efficiency of this MobileNetV2-based model, enhanced 

through optimal hyperparameters and the Nadam optimizer, makes it suitable for resource-

constrained environments. 

While ShuffleNet and SqueezeNet have lower parameter counts, their simplified architectures 

often sacrifice accuracy, especially for complex datasets. The proposed model bridges this 

gap by offering a strong balance between lightweight design and high performance. 

Though its FLOPs (~599M) are comparable to MobileNetV1 and NASNetMobile, this 

increase is a result of intentional architectural and training improvements. 

These enhancements, including optimizer choice and hyperparameter tuning, contribute to the 

model’s superior accuracy, justifying the computational cost. It further highlights that the 
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model can be integrated into smartphone-based tools or IoT devices for on-field disease 

monitoring, making precision agriculture more accessible to smallholder farmers. 

4.6.Comparative analysis with existing models in literature 

The proposed MobileNetV2-based model achieved a classification accuracy of 98.82%, 

outperforming existing models in literature when considering both model performance and 

dataset characteristics. A comparison of the proposed model with other recent studies is 

presented in the Table 10. 

Table 10. Comparison between proposed model and existing crop disease multi-

classifiers 

Study Model 

Architectur

e 

Crop 

Specie

s 

Classes Datase

t Size 

Performanc

e 

(Accuracy) 

Dataset 

Characteristics 

Y. Liu et al. 

[57] 

SqueezeNext 10 59 36,258 91.94% Lab-setting 

images 

Tambe et al. 

[27] 

MobileNetV

2 

14 38 87,867 91.98% Lab-setting 

images 

Macdonald et 

al. [58] 

Custom 

CNN 

14 38 54,306 96.75% Lab-setting 

images 

Barman et al. 

[44] 

EfficientNet

B0 

3 7 7000 97.29% Lab-setting 

images 

Proposed 

Model 

Fine-tuned 

MobileNetV

2 

16 36 56,044 98.82% Both real-world 

and lab-setting 

images 

From the comparison with the existing studies, it is apparent that the proposed model 

demonstrates an advantage over existing lightweight crop diseases multi-classifiers. This high 

performance stems from the model’s carefully fine-tuned architecture, the use of the Nadam 

optimizer, and the hyperparameter optimization. In contrast, other studies, such as those 

employing MobileNetV2 [27] reported lower accuracies, despite using lab-controlled 

datasets. Y. Liu et al. [57] employed SqueezeNext to classify 59 classes across 10 crop 

species, however, its accuracy was limited to 91.94% due to the inherent simplicity of the 

model and the sole reliance on lab-setting images. Likewise, Macdonald et al. [58] employed 

a custom CNN achieving higher accuracy than Y. Liu et al. [57] but still falling short of the 

proposed model’s performance. Notably, Barman et al. [44] achieved a high accuracy of 

97.29% with EfficientNetB0. However, this study was focused on a much smaller dataset of 

just 7,000 images and included only three crop species and seven classes. While this study 

highlights EfficientNetB0’s capability for smaller-scale problems, its limited crop diversity 

and dataset size make it unsuitable for generalized crop disease classification tasks. In 

contrast, the proposed model was trained on 16 crop species and 36 classes, making it 

significantly more versatile and applicable to real-world agricultural scenarios. 

Another critical aspect of the proposed model is its dataset composition. Unlike existing 

studies that primarily rely on lab-setting images, the proposed model incorporates both real-

world and lab-setting images, making it robust for practical deployment in diverse 

agricultural environments. This improvement addresses a critical gap in existing literature, 

where models trained solely on lab-controlled datasets may struggle with noisy and variable 

conditions encountered in real-world applications.  



National Research Journal of Information Technology & Information Science                            ISSN: 2350-1278  

Volume No: 12, Issue No: 2, Year: 2025 (July- December)               Peer Reviewed & Refereed Journal (IF: 7.9) 

PP: 153-175                                             Journal Website www.nrjitis.in  

Published By: National Press Associates  Page 170 
© Copyright @ Authors 

From a model design perspective, the proposed MobileNetV2-based architecture strikes an 

effective balance between computational efficiency and accuracy. Unlike models like 

SqueezeNext or EfficientNetB0, which are designed to minimize parameters and FLOPs at 

the cost of performance, the proposed model integrates a lightweight architecture with 

advanced training optimizations, enabling it to outperform the existing models. Additionally, 

while Tambe et al. [27] also utilized MobileNetV2, their model achieved only 91.98% 

accuracy, indicating the significant impact of the proposed model’s tailored optimizations. 

The key findings of this study highlight the practicality of employing lightweight CNN 

architectures for multi-class crop disease classification, especially in resource-limited 

agricultural settings. The model’s ability to process diverse datasets highlights its potential 

for real-world applications, such as early disease detection and crop health monitoring. This 

can aid farmers and agricultural professionals in timely decision-making and ultimately 

contribute to improving crop yields and reducing losses. 

4.7.Limitations of the study 

While the proposed model achieved high classification accuracy and demonstrated 

computational efficiency, certain limitations must be acknowledged. First, although the 

dataset combined both lab-controlled and real-field images, it may still be subject to bias due 

to uneven representation of some crop-disease classes. The generalizability of the model to 

unseen datasets from different geographies, crop varieties, or image acquisition devices 

remains to be validated. Second, variations in image resolution, illumination, occlusion, and 

natural background clutter were only partially captured in the dataset, which may limit 

performance under highly diverse real-world conditions. Third, the study focused on tuning 

two key hyperparameters (dropout rate and learning rate), while other hyperparameters (e.g., 

batch size, weight decay) were not explored, leaving open the possibility of further 

optimization. Addressing these limitations will be essential for enhancing the applicability of 

the model in large-scale agricultural deployments. 

5. CONCLUSION AND FUTURE WORK 

This study presented an optimized MobileNetV2-based deep learning framework for the 

classification of 36 healthy and diseased crop classes across 16 plant species. Through 

systematic optimizer benchmarking and Optuna-based hyperparameter tuning, the proposed 

model achieved 98.82% accuracy with only 2.3M parameters and 599 MFLOPs, making it 

suitable for deployment on edge devices in resource-constrained agricultural settings. By 

integrating both lab-controlled and real-field images, the model demonstrated improved 

generalizability compared to prior lightweight approaches. 

Looking ahead, three promising research directions emerge. First, expanding the dataset to 

include more crop-disease classes from diverse geographies would strengthen robustness and 

ensure wider applicability. Second, deploying the model in real-time scenarios, such as 

smartphone applications or IoT-enabled systems would provide practical validation of its 

field readiness. Third, future work may explore advanced efficiency techniques such as 

pruning, quantization, or lightweight ensemble learning to further enhance performance 

without increasing computational cost. 

This study advances the technical frontier of lightweight deep learning for crop disease 

classification as well as holds broader societal relevance. By enabling early and accurate 

disease detection in real-world conditions, it contributes to achieving Sustainable 

Development Goal 2 (Zero Hunger) through improved food security and sustainable 

agricultural practices. 
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