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ABSTRACT

The prevalence of crop diseases presents a major challenge to global food security and
agricultural sustainability, causing significant vyield losses and economic damage.
Conventional disease detection methods, which rely on manual inspection, are often
inaccurate, time-consuming, and impractical for large-scale implementation. While deep
learning, especially Convolutional Neural Networks, has shown promise in automating
disease classification, the practical deployment of these models is hindered by high
computational demands. This study proposes an efficient MobileNetV2-based deep learning
model tailored for classifying 36 healthy and unhealthy categories across 16 plant species.
The dataset used in this research combines real-field and lab-controlled images from multiple
public sources, enhancing the model’s generalizability. The model was trained with six
different optimizers, and Nadam was identified as the most effective, yielding 93.51% test
accuracy. To further enhance performance, Optuna-based hyperparameter tuning was
employed. The fine-tuned model attained 98.82% test accuracy, with precision, recall, and
F1-score of 0.9882 and ROC AUC of 0.9999, reflecting a 5.68% improvement over the
baseline model. The findings emphasize the feasibility of deploying a lightweight, high-
performance model for real-time crop disease detection. By offering a scalable and
computationally efficient approach, this study advances sustainable agriculture, enabling
timely disease identification and improved crop management.
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1. INTRODUCTION

Crop diseases induced by various factors like environmental conditions and pests, severely
impact agricultural productivity, farmer livelihoods, national economies, and the overall
global food security. According to the United Nations Food and Agriculture Organization
(FAO), crop diseases cause up to 40% of global crop production losses annually, making
them a critical barrier to achieving sustainable agriculture and meeting the nutritional
demands of a growing global population [1]. These losses not only reduce farmer incomes
but also affect national Gross Domestic Product (GDP), export potential, and food supply
chains, emphasizing the pressing need for effective crop disease management strategies [2].
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Timely detection and accurate diagnosis of crop diseases are essential to mitigate their
adverse effects. Farmers usually employ visual analysis techniques based on their knowledge
and experience to detect diseases. This method is subjective, labor-intensive, and prone to
diagnostic errors, often resulting in delayed interventions. Such delays result in disease
spread, increase crop losses, and necessitate greater reliance on chemical inputs, which can
have long-term environmental consequences [3]. These limitations highlight the urgent need
for innovative solutions that facilitate early, accurate, and efficient crop disease detection.

Artificial Intelligence (AI) technologies like Machine Learning (ML), and Deep Learning
(DL), are increasingly being used for automating disease detection, including crop diseases
[4-7].

Among these, Convolutional Neural Networks (CNNs) are widely being employed for their
ability to extract hierarchical features from images, making them highly effective for plant
disease classification [8-11]. Several studies have demonstrated that CNN-based models
achieve high accuracy in identifying crop diseases, establishing them as a cornerstone of
precision agriculture [12-16]. However, significant challenges remain in deploying automated
disease detection systems in practical settings, leaving critical gaps in the literature.

First, most models are computationally heavy (e.g., VGG, ResNet), making them impractical
for smallholder farms and edge devices. Although lightweight models such as MobileNetV2
and EfficientNet have been proposed, many studies remain restricted to single-crop disease
detection [17-20]. For example, Pineda Medina et al. [21] applied MobileNetV2 for potato
leaf disease detection and achieved high accuracy but focused only on three disease classes.
Similarly, Rashid et al. [22] used MobileNetV3 for tomato classification in a mobile
application, but its scope was limited to a single crop and lab-quality images.

Second, there is a generalizability gap in datasets. Most prior studies rely on lab-controlled
datasets [23-25], which fail to capture the variability of real-field conditions, including
background clutter, lighting variations, and overlapping leaves. Studies, such as Lu et al. [26]
and Tambe et al. [27] that utilized MobileNetV2, emphasize the potential of lightweight
architectures but also note challenges in robustness when tested in diverse, uncontrolled field
environments.

Third, while optimization techniques significantly affect CNN performance, their systematic
use remains limited. For instance, Dogo et al. [28] observed Nadam’s superiority in
convergence for CNNs, and Bhuyian et al. [29] showed that Bayesian optimization improves
performance for lightweight models. Yet, automated hyperparameter tuning frameworks are
underexplored in multi-crop disease classification tasks, where balancing performance and
efficiency is critical.

1.1. Research Hypothesis
Based on these gaps, this study hypothesizes that:

Hy(Null Hypothesis): A lightweight CNN model, fine-tuned with automated
hyperparameter optimization, does not outperform baseline CNN models in terms of
classification accuracy and generalizability across multiple crop species.

H, (Alternative Hypothesis): A lightweight CNN model, fine-tuned with automated
hyperparameter optimization, outperforms baseline CNN models in terms of classification
accuracy and generalizability across multiple crop species.

1.2. Research objectives

This study is guided by the following objectives:

Published By: National Press Associates Page 154
Copyright @ Authaors



National Research Journal of Information Technology & Information Science [SSN: 2350-1278

Volume No: 12, Issue No: 2. Year: 2023 (July- December) Peer Reviewed & Refereed Journal (IF: 7.9)
PP: 1a3-17a Journal Website www.nrjitis.in

1. To develop a lightweight CNN model using transfer learning with MobileNetV2 for
multi-crop disease classification.

2. To systematically evaluate optimizers and identify the most effective one for model
training through comparative experiments.

3. To apply automated hyperparameter tuning to optimize hyperparameters for
improved performance.

4. To validate the proposed model on a comprehensive dataset combining lab-
controlled and real-field images across 36 classes and 16 crop species.

1.3. Contributions of the study

Unlike earlier MobileNetV2-based studies [21-22], which are constrained by single-crop
focus, limited optimization, or exclusive reliance on lab datasets, this study makes the
following contributions:

e It proposes a generalized lightweight model capable of classifying diseases across
multiple crops, moving beyond single-crop limitations.

e It integrates automated hyperparameter tuning (Optuna) with MobileNetV2, an
approach underexplored in multi-crop disease detection.

e It evaluates multiple optimizers under controlled experiments, statistically validating
performance differences.

e [t utilizes a diverse dataset that combines real-field and lab-controlled images, thereby
enhancing robustness in practical agricultural settings.

1.4. Organization of the paper

The subsequent sections of this paper are structured as follows. Section 2 provides a detailed
review of the literature on deep learning applications in crop disease detection. Section 3
describes the methodology employed to develop the proposed model. Section 4 presents the
results and discusses the findings in relation to existing studies. Finally, Section 5 concludes
the study and offers directions for future research.

2. REVIEW OF LITERATURE

Deep learning has significantly advanced the automatic identification and classification of
crop diseases. This section reviews the recent literature, organized into four themes:
lightweight architectures for crop disease detection, transfer learning and multi-crop
generalization, optimization and automated hyperparameter tuning, and dataset
considerations. The review emphasizes the need of compact, generalizable, and field-
deployable models.

2.1.  Lightweight architectures for crop disease detection

Early works in the area of crop disease classification such as Mohanty et al. [30] and
Ferentinos [15] employed deep CNNs like GoogleNet and VGG, achieving high accuracies
(>99%) on PlantVillage [31] dataset. However, these models suffered from high
computational costs and poor generalization to real-field conditions. To address these issues,
lightweight CNNs have emerged.

MobileNet and its successors dominate this space. Fan and Guan [32] and Ullah et al. [33]
demonstrated MobileNetV2 and ShuffleNetV2 models exceeding 98% accuracy for tomato
and corn diseases. Duhan et al. [34] proposed RTR _Lite-MobileNetV2, specifically designed
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for low-resource edge deployment, achieving comparable performance while reducing
Floating Point Operations Per Second (FLOPs). Similarly, Rashid et al. [22] developed a
MobileNetV3 variant for tomato leaf disease detection, emphasizing real-time applicability.

Other variants include EfficientNet and SqueezeNet derivatives. Ali et al. [35] presented an
ensemble of EfficientNet and ResNet models, reporting >99% accuracy across multiple
crops, but at the cost of parameter growth. By contrast, Lu et al. [26] proposed MobileNetV2
modifications that reduced FLOPs while maintaining >99% accuracy. These developments
highlight the centrality of lightweight CNNs in balancing accuracy with resource constraints.

2.2.Transfer learning and multi-crop generalization

Transfer learning has been pivotal in crop disease identification. Pineda Medina et al. [21]
and Kini et al. [36] leveraged pretrained CNNs for feature extraction, achieving high
accuracy (>97%) across multiple disease classes. However, these approaches are often single-
crop oriented.

Recent studies have begun exploring cross-crop and multi-crop generalization. Tambe et al.
[27] developed a MobileNetV2 based model for classifying diseases in multiple crops,
achieving an accuracy of 91.98%. Ashurov et al. [37] highlighted transfer learning strategies
across multiple crop species. These findings align with emerging trends that emphasize not
just accuracy but cross-species adaptability, which is essential for practical agricultural
adoption.

2.3.0ptimization and automatic hyperparameter tuning

Optimizers and hyperparameter tuning significantly influence CNN performance. While
Adam optimizer [38] is widely used, studies stress the importance of context-specific
selection. Dogo et al. [28] found Nadam superior in convergence and accuracy, while Saleem
et al. [39] highlighted the synergy between optimizers and model types, with Adam-Xception
pairing yielding a 0.9978 F1-score.

More recently, automated methods have been deployed. Ashwinkumar et al. [40] and
Bhuyian et al. [29] applied Bayesian optimization for lightweight models for tomato and
banana disease detection, achieving 96-98% accuracy. These findings reinforce the
importance of the current study’s integration of Optuna-based tuning in achieving state-of-
the-art performance.

2.4.Datasets and real-field challenges

Dataset choice strongly influences model performance. Early reliance on controlled datasets
(e.g., PlantVillage) yielded inflated accuracies, but failed in uncontrolled field environments
[15], [30]. To address this, field-based datasets such as PlantDoc [41] and custom multi-crop
datasets have gained traction.

Salka et al. [42] surveyed field dataset challenges, including varying lighting, occlusion, and
mixed symptoms. Ferdi [43] emphasized the benefit of background-removal augmentation to
reduce noise. Still, most lightweight models remain evaluated on single crops or lab settings

[211, [27].

This study uniquely addresses this limitation by combining both real-field and controlled
images across 16 crops and 36 classes. Unlike studies like [27], [44], which focus exclusively
on lab datasets, this study integrates diverse data sources to maximize robustness.
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2.5.Comparative analysis of existing lightweight models

To contextualize the proposed approach, Table 1 provides a comparative summary of
representative lightweight models reported in recent studies, highlighting differences in
crops, dataset scale, number of classes, model complexity (parameters and FLOPs), and
performance.

Table 1. Comparative analysis of existing lightweight CNN models for plant disease

detection
Study Model | Crop | Datase | Cla | Paramet | FLOPs | Accura | Remarks
S tSize | sses |ers (Millions | cy (%)
(Millions |)
)
Duhan Mobil | Multi | 61,486 | 39 1.05 526 99.92 Achieved the
etal. eNetV | ple images highest accuracy
[34] 2 crops with
augmentation;
precision, recall,
and F1 >
99.85%.
Pineda | Mobil | Potato | 3,000 3 2.34 - 98.70 Effective in real-
Medina | eNetV images time
et al. 2 applications
[21] with small
dataset.
Tambe | Mobil | Multi | 87,867 | 38 - - 91.98 Struggles in
et al. eNetV | ple images multi-leaf, crop-
[27] 2 crops specific disease
identification.
Luetal. | Mobil | Multi | 30,644 | 25 0.91 268 99.53 High accuracy
[26] eNetV | ple images under controlled
2 crops settings; limited
field
applicability.
Zhu and | Shuffl | Maize | 10,845 | 6 0.87 1.75 99.86 High accuracy
Gao eNetV images but limited to
[45] 2 maize; narrow
disease range.
Ullahet | Custo | Toma | 10,000 | 10 0.69 — 99.34 Extremely
al.[33] | m to images lightweight, but
CNN limited by lab-
captured dataset.

As shown in Table 1, MobileNetV2 is a widely adopted lightweight backbone. Duhan et al.
[34] achieved an exceptional accuracy of 99.92% on a large multi-crop dataset,
demonstrating that MobileNetV2, when carefully augmented, can outperform heavier CNNs
while maintaining only 1.05M parameters. Similarly, Lu et al. [26] reported strong results
(99.53%) across 25 PlantVillage classes, though this performance was obtained under
controlled conditions, limiting its field applicability. Likewise, Tambe et al. [27] highlighted
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the challenge of handling complex multi-leaf images as their model was trained using lab-
controlled images with a uniform background.

In a crop-specific context, Pineda Medina et al. [21] demonstrated the suitability of
MobileNetV2 for potato disease detection, achieving 98.7% accuracy with just 2.34M
parameters, making it highly suitable for real-time use.

Beyond MobileNet, other lightweight models have also been explored. Zhu and Gao [45]
developed a ShuffleNetV2 model for maize disease classification, achieving 99.86%
accuracy with only 0.87M parameters and 1.75M FLOPs, but its narrow focus on six maize
diseases limited generalizability. Ullah et al. [33] proposed a custom lightweight CNN with
just 0.69M parameters, reaching 99.34% accuracy for tomato leaf diseases, though its
reliance on lab-captured images reduces its robustness in real-world conditions.

Overall, these comparisons highlight two consistent trends. First, MobileNetV2 is a dominant
and versatile lightweight backbone, but its performance depends heavily on dataset diversity
and robustness to real-field variability. Second, lightweight models such as ShuffleNetV2
show impressive compactness, but their generalizability across crops and disease types
remains constrained in the current body of research.

2.6.Research gaps

Based on the review of the literature, the following research gaps have been identified. Most
lightweight models focus on single-crop classification, limiting their usefulness for farmers
managing diverse crop species [32], [46]. Optimization techniques, though effective for
single crops, are rarely adapted for the added complexity of multi-crop classification, where
both accuracy and efficiency must be balanced [29], [47]. Additionally, many models are
trained on lab-controlled datasets, reducing their robustness in real-field conditions where
diseases vary with environment and crop type [23], [27], [48]. Transfer learning remains
underutilized for multi-species classification, with challenges in preserving both performance
and compactness.

Together, these gaps highlight the need for research that moves beyond narrow single-crop
models, integrates both lab and real-field data, adopts systematic optimization techniques,
and validates improvements through rigorous statistical analysis. Addressing these gaps is
essential for advancing crop disease detection models that are both accurate and practically
deployable in resource-constrained agricultural settings.

3. MATERIALS AND METHODS

This section outlines the methodology followed to develop a lightweight deep learning model
for multi-crop disease classification. It covers dataset preparation, model training using
multiple optimizers, automated hyperparameter tuning, and performance evaluation. An
overview of the process is illustrated in Figure 1.

Data Preparation

Dat i Baseline Model Training Optimizer Selection
Start — Dat cEnE —»  Trainwith 6 optimizers . Compare performance
e el Record performance metrics Select the best optimizer
Dataset splitting
. Final Model Training Hyperparameter Tuning
Stop S — Pel;fs?;mj;T;uI:\.;:él::é;un <«——  Using best optimizerand Optimize learning rate and
9 tuned hyperparameters dropout rate
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Figure 1. Overview of research methodology
3.1.Computational environment

All experiments were conducted in Python (version 3.11.7) using the TensorFlow deep
learning framework, with supporting libraries including NumPy, Pandas, Matplotlib, and
Scikit-learn. Training was executed on a workstation equipped with an NVIDIA RTX 3050
GPU (6 GB VRAM), 13th Gen Intel(R) Core (TM) i7-13700HX (2.10 GHz) (16 cores, 2.1
GHz), and 16 GB RAM, running a 64-bit Windows 11 operating system with CUDA 11.8 for
GPU acceleration.

3.2.Dataset curation

To support generalization across crop types and environmental conditions, a diverse dataset
was created by combining images from five publicly available sources: PlantVillage [31],
PlantDoc [41], Bean Leaf Diseases Dataset [49], Coffee Leaf Diseases Dataset [50], and
Banana Leaf Diseases Dataset [51]. These datasets represent a mix of real-field and lab-
controlled images across 16 plant species and 36 healthy/diseased classes. The final curated
dataset comprised 56,044 images, split into training (39,214), validation (7,843), and testing
(16,830) subsets using a stratified 70-30 split, followed by an 80-20 training-validation split.
Sample images from the dataset are shown in Figure 2.

Apple Scab

Corn Northern Leaf Blight

Potato Late Blight

Figure 2. A sample of images from the combined dataset

3.3.Data preprocessing and class imbalance handling

The curated dataset exhibited class imbalance, with some disease classes significantly
underrepresented. To address this, data augmentation was applied to minority classes using
techniques such as random rotations, flips, shifts, zooming, and shear transformations. This
increased sample size and also improved the model’s robustness to real-world variations.
Additionally, class weights were computed based on inverse class frequency to ensure fair
learning across all categories. All images were resized to 224 x 224 pixels and normalized to
a [0, 1] scale to meet the input requirements of the proposed model.
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3.4.Model architecture

MobileNetV2 was selected as the backbone model for its strong balance between accuracy
and efficiency, making it suitable for deployment in resource-constrained agricultural
environments. Unlike other lightweight models, MobileNetV2 integrates features such as
inverted residuals and linear bottlenecks, offering an optimal trade-off between performance
and complexity. To contextualize this choice, Table 2 provides a comparison with other
widely used lightweight architectures, including MobileNetV1, EfficientNetBO,
NASNetMobile, ShuffleNet, and SqueezeNet. The comparison includes parameter count,
computational complexity (FLOPs), and Top-1 ImageNet accuracy, which together highlight
the trade-offs between efficiency and predictive performance. As shown, MobileNetV2
achieves higher accuracy than most models of comparable size and complexity, reinforcing
its suitability as the foundation for the present study.

Table 2. Comparison of MobileNetV2 with other lightweight models

Model Paramete | FLOPS | Top-1 Key features Suitability for
r count | (Million | Accuracy on this study
s) ImageNet
MobileNetV |~3.4M ~300 ~71.8% Inverted High efficiency
2 residuals, linear |and accuracy
bottlenecks for multi-class
classification
MobileNetV |~4.2M ~569 ~70.9% Depthwise Lacks advanced
1 separable features of
convolutions MobileNetV2
EfficientNet |~5.3M ~390 ~76.7% Compound Higher
BO scaling computational
cost
NASNetMo |~5.3M ~564 ~74.0% Neural Complex and
bile architecture less efficient
search
ShuffleNet |~1.4M ~150 ~69.4% Group Lower accuracy
convolutions, on diverse
channel shuffling | datasets
SqueezeNet |~1.2M ~831 ~57.5% Fire modules Compact but
insufficient for
complex tasks

To tailor MobileNetV2 for the 36-class crop disease classification task, a customized
classification head was added. The original fully connected layers were replaced with a
global average pooling layer, followed by a dropout layer (rate = 0.2) and a dense softmax
layer for multi-class output. The base MobileNetV2, initialized with ImageNet weights, was
frozen during initial training to retain its learned features. The customized model architecture
is illustrated in Figure 3.

Page |60
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Input Image Pre-trained Feature Extractor Custom Classification Head
Dense
. . lobal
MobileNetV2 model with o . Drofoik _, Output
] frozen weights By Layer Layer
g Pooling  (rate=0.2) y
.—‘ 36 classes

204x2203
Figure 3. Customized baseline MobileNetV2 model architecture
3.5.0ptimizer selection

To ensure optimal performance of the proposed model, the MobileNetV2 architecture was
trained using six different optimizers: Adam, Stochastic Gradient Descent (SGD), RMSprop,
Adagrad, Nadam, and Adamax. These optimizers were chosen for their established
effectiveness in deep learning applications and their diverse approaches to gradient-based
optimization. Each optimizer was applied using its default learning rate settings to maintain
consistency, and the model was trained with the configuration setting (epochs=30, steps per
epoch=300, validation steps=100). For each trained baseline model, performance metrics
were recorded, providing a basis for comparing the effectiveness of the different optimizers.

The need for comparing these optimizers arises from the fact that their performance can vary
significantly based on the nature of the dataset and the architecture of the model. Optimizers
not only influence convergence speed but also impact the ability of the model to generalize
well to unseen data. In the context of this study, selecting the right optimizer was particularly
critical, as the classification task involved a diverse dataset of crop disease images, requiring
high accuracy, precision, recall, and generalization capacity.

By systematically evaluating the performance of the model trained with each optimizer over
the specified training conditions, the most suitable optimizer for the study was identified
based on a range of evaluation metrics.

3.6.Automatic hyperparameter tuning

Following optimizer selection, key hyperparameters, dropout rate and learning rate, were
tuned using Optuna [52], an efficient hyperparameter optimization framework. Automatic
tuning was chosen over manual or grid search methods to reduce bias and improve efficiency.
In this study, dropout rate and learning rate were targeted, as these are critical factors
influencing model generalization, convergence stability, and training dynamics.

Optuna was configured to maximize the weighted Fl-score on the validation set as the
objective function, ensuring that improvements were not limited to accuracy alone but
extended to balanced classification performance across all classes. For each trial,
hyperparameter values were sampled by Optuna within the ranges summarized in Table 3.

Table 3. Search space for automatic hyperparameter tuning

Parameter Range Sampling Strategy
Dropout rate 0.1 to 0.9 (step=0.1) Uniform
Learning rate 10° to 10 Log Uniform

The learning rate was sampled on a logarithmic scale between 1e™¢ and 1e™2, while dropout
rate was sampled uniformly between 0.1 and 0.9 in increments of 0.1. The Optuna
hyperparameter optimization study was performed with a fixed random seed of 42 to control
trial sampling. A total of 30 trials were executed. Each trial consisted of the following steps:
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1. Data was split into training and validation sets (80:20, stratified).

2. Image augmentation (rotation, shifting, shearing, zooming, flipping) was applied to
improve robustness.

3. A MobileNetV2 model, fine-tuned with a Nadam optimizer, was trained with the
candidate hyperparameters.

4. Training incorporated early stopping (patience = 20) and ReduceLROnPlateau (factor
= 0.5, patience = 3, minimum learning rate = 1e °) to prevent overfitting and improve
convergence.

5. Class weights were computed to mitigate imbalance across crop disease classes.

6. The model was evaluated on the validation set, and the weighted F1-score was
returned to Optuna as the performance metric.

Bayesian optimization with pruning was employed by Optuna, and poorly performing trials
were terminated early to reduce computation. After completing 30 trials, the best-performing
configuration was selected based on the highest validation weighted F1-score.

3.7. Model development and performance evaluation

After selecting the best-performing optimizer and identifying the optimal hyperparameters
(learning rate and dropout rate), the MobileNetV2 model was trained with these
configurations to achieve optimal performance. The model was trained for 50 epochs with
300 steps per epoch for the training set and 100 validation steps for the validation set. Early
stopping was implemented to prevent overfitting and ensure the best model weights were
retained. Additionally, a learning rate reduction mechanism was incorporated. Class weights
were calculated and applied during training to address the class imbalance in the dataset,
ensuring that minority classes contributed proportionately to the model's learning process.

To comprehensively assess the performance of the proposed model and the baseline models
created using different optimizers, a diverse set of evaluation metrics was employed on the
test dataset. Since the dataset exhibited class imbalance, weighted precision, weighted recall,
and weighted F1-score were calculated along with the accuracy metric. The equations of
these metrics are listed in Table 4.

Table 4. Metrics for performance evaluation

Metric Equation Description
Accuracy TP+TN TP, TN, FP, and FN denote True Positives, True
TP + FP + TN + F Negatives, False Positives, and False Negatives,
respectively
Weighted ¢ N;-P; |N;is the number of instances in class i, P;is the
Precision Ry = “vycC . |precision for class i, and C is the total number of
=1 categories
Weighted Recall ¢ | N;-R; |R;isthe recall for class i.
Ry =—F——
i=1 NVi
Weighted F1- F1, Fl, = 2P R
score _ BN FL [T T PR,
i1 N;
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In addition to these metrics, the overall weighted Receiver Operating Characteristic- Area
Under Curve (ROC AUC) score was calculated using the one-vs-rest (OVR) method, as per
the multi-class classification nature of the current study. This metric evaluates the model's
ability to distinguish between classes. A deeper analysis of the model's performance was
conducted by examining the confusion matrix. Additionally, the performance of the baseline
models and the fine-tuned proposed model was statistically tested.

3.8 Statistical Analysis

To rigorously evaluate model performance, multiple statistical tests were incorporated into
the experimental design. The goal was twofold:

1. To examine whether the choice of optimizer significantly influenced the baseline
MobileNetV2 performance

2. To validate whether hyperparameter tuning with Optuna led to statistically significant
improvements over the baseline models.

For the baseline analysis, MobileNetV2 model with each of the six optimizers was trained
with different random seeds (42, 123, 999). This repeated-seed design has been recommended
in prior deep learning studies to account for stochastic variations during training [53-54]. The
resulting test accuracies were analyzed using a one-way repeated measures ANOVA to
determine whether performance differences among optimizers were statistically significant.
Because ANOVA assumes normality and equal variances, the non-parametric Friedman test
was additionally applied, as suggested in comparative deep learning research [55], to provide
a distribution-free confirmation.

Following the baseline evaluation, the tuned proposed model- optimized using Optuna for
dropout rate and learning rate- was compared against its baseline counterpart. Statistical
validation was performed using a paired t-test. To quantify the magnitude of improvements,
Cohen’s d was calculated as an effect size measure, where values above 0.8 indicate large
effects [56]. Additionally, 95% confidence intervals (Cls) for the mean difference in accuracy
were computed to provide an interval estimate of the performance gain.

4. Results and Discussion

This section presents a comprehensive evaluation of the proposed fine-tuned MobileNetV2
model, including its classification performance, computational efficiency, and a comparative
analysis with existing lightweight models and prior studies in the literature.

4.1.0ptimizer comparison results

The baseline MobileNetV2 model was trained using six different optimizers- Adam, SGD,
RMSprop, Adagrad, Adamax, and Nadam- and their performances were compared based on
key evaluation metrics such as test accuracy, weighted precision, weighted recall, weighted
F1-score, and overall ROC AUC. The results are summarized in Table 5, which presents a
comprehensive comparison of the optimizers' effectiveness in training the model. The best
performing optimizer is highlighted in boldface in Table 5.

Table 5. Baseline MobileNetV2 model performance comparison using different

optimizers
Optimizer Test Accuracy | Weighted Weighted | Weighted Overall
Precision Recall F1-score ROC AUC
Adam 92.43% 0.9149 0.9219 0.9146 0.9979
SGD 91.72% 0.9038 09161 0.9059 0.9974
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RMSprop 92.46% 0.9125 0.9189 0.9127 0.9973
Adagrad 83.31% 0.8159 0.8195 0.8101 0.9908
Adamax 92.37% 0.9102 0.9216 0.9133 0.9976
Nadam 93.51% 0.9231 0.9333 0.9257 0.9982

From the results in Table 5, Nadam emerged as the best-performing optimizer, achieving the
highest test accuracy (93.51%), weighted precision (0.9231), weighted recall (0.9333), and
weighted F1-score (0.9257). Additionally, its overall ROC AUC of 0.9982 further highlights
its superior performance in distinguishing between classes across the test dataset.

The superior performance of Nadam can be attributed to its incorporation of Nesterov
momentum on top of Adam's adaptive gradient methodology. Nesterov momentum predicts
the future position of the gradient and adjusts accordingly, which results in smoother and
faster convergence. This capability is particularly advantageous in complex tasks like multi-
class crop disease classification, where the loss landscape can be non-convex and noisy.
Nadam's ability to maintain stability while achieving faster convergence is evident in its
higher accuracy.

In contrast, while optimizers like Adam and RMSprop performed well, they lacked the
additional momentum enhancements provided by Nadam, which likely explains their
marginally lower performance. SGD, while effective in some cases, showed slower
convergence due to its lack of adaptiveness, evident in its slightly lower accuracy (91.72%).
Adagrad, which adapts learning rates individually for parameters, underperformed
significantly (test accuracy: 83.31%), likely due to its tendency to diminish learning rates
excessively during training, leading to suboptimal convergence.

The results also highlight that Adamax closely followed Nadam in performance but fell
slightly short in terms of test accuracy and weighted F1-score. This indicates its effectiveness
but suggests a limitation in convergence speed compared to Nadam. Nadam's superior
handling of the optimization process justifies its selection for further training of the
MobileNetV2 model.

4.2 Results of automatic hyperparameter tuning

The hyperparameters, learning rate and dropout rate, were optimized using Optuna, which
identified the best values as a learning rate of 0.0001837 and a dropout probability of 0.2.
The model was trained using this best found hyperparameter values. The model's
performance before and after hyperparameter tuning is detailed in Table 6, along with the
percentage change in each evaluation metric.

Table 6. Model performance before and after hyperparameter tuning

Metric Before tuning After tuning Percentage change (%)
Test Accuracy 93.51% 98.82% +5.68
Test Loss 0.2234 0.0442 -80.21
Weighted Precision 0.9231 0.9883 +7.06
Weighted Recall 0.9333 0.9882 +5.88
Weighted F1 Score 0.9257 0.9882 +6.75
Overall ROC AUC 0.9982 0.9999 +0.17

It is apparent from Table 6 that hyperparameter tuning resulted in a significant improvement
in model performance across all metrics. The test accuracy increased from 93.51% to
98.82%, representing a substantial 5.68% enhancement. Similarly, the test loss dropped
dramatically by 80.21%, indicating more stable and accurate predictions with reduced errors.
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Improvements in weighted precision, recall, and F1 score highlight enhanced class-wise
prediction capability, reducing misclassification across all categories. The slight increase in
overall ROC AUC (0.17%) suggests near-perfect separability between classes, which is
crucial for multi-class classification tasks.

The optimized learning rate and dropout probability played pivotal roles in achieving these
improvements. The fine-tuned learning rate ensured smoother and more precise gradient
updates, allowing the model to converge effectively without overshooting the minima. The
optimized dropout rate balanced regularization and overfitting control, particularly important
for the diverse and complex crop disease dataset used in this study.

The substantial improvements further validate the efficacy of automatic hyperparameter
optimization techniques like Optuna, which streamline the search for ideal parameters
compared to manual tuning or grid search. By systematically exploring the parameter space,
Optuna identified hyperparameters that maximized performance while maintaining
computational efficiency. To validate the performance improvements of the proposed model,
statistical analysis was conducted, the results of which are presented in the next section.

4.3.Results of statistical analysis

To evaluate whether the choice of optimizer had a statistically significant effect on model
performance, test accuracies of baseline MobileNetV2 models trained with six different
optimizers were compared across three independent runs for each optimizer. The mean and
standard deviation of test accuracies are summarized in Table 7. Among all optimizers,
Nadam achieved the highest average accuracy (90.58%), followed closely by SGD (88.20%)),
while Adagrad produced the lowest performance (78.54%).

Table 7. Performance of MobileNetV2 models across six optimizers

Test Accuracy (%)

Mean Standard
Optimizer | Seed 42 Seed 123 | Seed 999 Accuracy Deviation
Adagrad 83.26 76.19 76.17 78.54 0.0334
Adamax 91.85 88.19 57.75 79.26 0.1529
RMSprop 92.54 89.07 75.39 85.67 0.0740
Adam 93.42 83.97 83.87 87.09 0.0448
SGD 91.40 88.24 84.96 88.20 0.0263
Nadam 93.80 89.95 88.00 90.58 0.0241

A one-way repeated measures ANOVA was conducted to assess whether these observed
differences were statistically significant. The results indicated no significant differences
among optimizers, F(5,12) = 0.87, p = 0.528. To further validate this finding, the non-
parametric Friedman test was applied, yielding %> = 9.48 with p = 0.092, which similarly
failed to demonstrate statistical significance. Thus, as shown in Table 7, although Nadam
outperformed the other optimizers on average, the improvements were not statistically
significant. This outcome 1is likely influenced by the small sample size of three runs per
optimizer, which limits the power of the statistical tests. Future work could incorporate a
larger number of independent runs to provide higher statistical power and more robust
conclusions.

Having established Nadam as the best-performing optimizer in terms of mean accuracy, the
next stage of analysis compared the baseline Nadam model against its tuned counterpart
obtained through Optuna-based hyperparameter optimization. The test results from three
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independent runs with different seeds (42, 123, 999) are presented in Table 8. The tuned
Nadam model consistently outperformed the baseline, with accuracies exceeding 98.74%
across all runs.

Table 8. Performance comparison of baseline vs. tuned Nadam models (mean +
standard deviation across three runs)

Model Test Accuracy (%)
Baseline Nadam 90.58 + 0.030
Tuned Nadam (Optuna) 98.74 £ 0.001

To statistically validate these improvements, paired #-tests were applied. The paired #-test
demonstrated that the tuned Nadam model significantly outperformed the baseline (1 = 5.04, p
= 0.037), with a 95% confidence interval for the difference of [0.01, 0.15]. This suggests that
the accuracy improvements introduced by hyperparameter optimization are statistically
meaningful. Importantly, the effect size estimated using Cohen’s d was 2.91, which
corresponds to an extremely large effect, reinforcing the practical importance of the observed
improvements.

These findings support rejection of the null hypothesis (Ho) and provide evidence in favor of
the alternative hypothesis (H:), namely that automated hyperparameter optimization improves
classification accuracy and generalizability across multiple crop species. The statistically
significant improvements suggest that farmers and extension workers could rely on the model
to provide more consistent diagnostic outputs, even when deployed on diverse data sources.

4.4 Proposed model performance analysis

In order to obtain deeper insights into the tuned-model performance, its accuracy and loss
plots, and confusion matrix were analyzed.

The accuracy and loss curves of the proposed model demonstrate consistent performance
across training and validation phases (Figure 4). The training and validation accuracy
steadily improved during the initial epochs, surpassing 90% within the first 10 epochs. Both
training and validation accuracy converge close to 99% towards the later epochs, indicating a
high-performing model. The training and validation loss exhibited a rapid decline during the
early epochs, stabilizing at minimal values (below 0.05) after approximately 20 epochs.
Notably, the validation loss closely follows the training loss curve, suggesting no overfitting
or underfitting issues. This minimal gap between training and validation accuracy/loss
throughout the training process highlights the model's ability to generalize well to unseen
data.
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Figure 4. Accuracy and loss plots of the proposed model
reflects the model's strong generalization capability and its ability to discriminate between
distinct classes effectively. This is particularly notable given the diversity of the dataset,

which includes healthy and diseased leaves from multiple crops with varying visual

performance of the model (Figure 5). The concentration of predictions along the diagonal
characteristics.

The proposed model's confusion matrix offers a thorough analysis of the classification
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Figure 5. Confusion matrix of the proposed model
For most classes, including high-support categories such as Orange Haunglongbing, Soybean

Healthy, and Tomato Yellow Leaf Curl Virus, the model achieved nearly perfect predictions,
with minimal or no misclassifications. Classes with lower support, such as Bean Angular
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Leaf Spot and Strawberry Healthy, also exhibited strong performance, with very few
misclassifications observed.

The off-diagonal misclassifications are sparse and primarily limited to visually similar classes
or classes with shared morphological features. For instance, Tomato Early Blight and Tomato
Late Blight show minor confusion, as a few instances of the former were misclassified as the
latter. Similarly, some misclassifications occurred between Apple Scab and Apple Black Rot,
likely due to overlapping symptoms such as leaf discoloration.

The model's ability to handle high-support and low-support classes with consistent accuracy
demonstrates the efficacy of the Nadam optimizer and the tuned hyperparameters. These
elements contributed to the balanced learning of features across classes, preventing
overfitting to dominant categories and underrepresentation of minority ones.

This level of class discrimination is essential in practice, as visually similar diseases often
require distinct treatments; hence, misclassification could lead to costly or ineffective
interventions.

4.5.Computational efficiency of the proposed model

The computational efficiency of the proposed model demonstrates significant improvements
in both parameter count and FLOPs. Specifically, the proposed model has approximately 2.3
million trainable parameters and requires ~599 million FLOPs for inference. A comparative
analysis of these values against other well-known lightweight models, presented in Table 9,
reveal the following insights.

Table 9. Computational efficiency of proposed model versus other lightweight models

Model Parameter count FLOPS (Millions)
MobileNetV2 ~3.4M ~300
MobileNetV1 ~4.2M ~569
EfficientNetBO ~5.3M ~390
NASNetMobile ~5.3M ~564
ShuffleNet ~1.4M ~150
SqueezeNet ~1.2M ~831
Proposed Model ~2.3M ~599

Compared to MobileNetV1, the proposed model reduces parameter count by ~45% while
requiring slightly more FLOPs. It is also more parameter-efficient than EfficientNetBO and
NASNetMobile (~57% fewer parameters), both of which are computationally demanding.

Despite having higher FLOPs than MobileNetV2, the proposed model outperforms it in
classification performance. The efficiency of this MobileNetV2-based model, enhanced
through optimal hyperparameters and the Nadam optimizer, makes it suitable for resource-
constrained environments.

While ShuffleNet and SqueezeNet have lower parameter counts, their simplified architectures
often sacrifice accuracy, especially for complex datasets. The proposed model bridges this
gap by offering a strong balance between lightweight design and high performance.

Though its FLOPs (~599M) are comparable to MobileNetV1 and NASNetMobile, this
increase is a result of intentional architectural and training improvements.

These enhancements, including optimizer choice and hyperparameter tuning, contribute to the
model’s superior accuracy, justifying the computational cost. It further highlights that the
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model can be integrated into smartphone-based tools or IoT devices for on-field disease
monitoring, making precision agriculture more accessible to smallholder farmers.

4.6.Comparative analysis with existing models in literature

The proposed MobileNetV2-based model achieved a classification accuracy of 98.82%,
outperforming existing models in literature when considering both model performance and
dataset characteristics. A comparison of the proposed model with other recent studies is
presented in the Table 10.

Table 10. Comparison between proposed model and existing crop disease multi-

classifiers

Study Model Crop |Classes |Datase | Performanc | Dataset
Architectur |Specie t Size |e Characteristics
e S (Accuracy)

Y. Liu et al. SqueezeNext | 10 59 36,258 [91.94% Lab-setting

[57] images

Tambe et al. MobileNetV | 14 38 87,867 [91.98% Lab-setting

[27] 2 images

Macdonald et | Custom 14 38 54,306 [96.75% Lab-setting

al. [58] CNN images

Barman et al. |EfficientNet |3 7 7000 97.29% Lab-setting

[44] BO images

Proposed Fine-tuned |16 36 56,044 | 98.82% Both real-world

Model MobileNetV and lab-setting
2 images

From the comparison with the existing studies, it is apparent that the proposed model
demonstrates an advantage over existing lightweight crop diseases multi-classifiers. This high
performance stems from the model’s carefully fine-tuned architecture, the use of the Nadam
optimizer, and the hyperparameter optimization. In contrast, other studies, such as those
employing MobileNetV2 [27] reported lower accuracies, despite using lab-controlled
datasets. Y. Liu et al. [57] employed SqueezeNext to classify 59 classes across 10 crop
species, however, its accuracy was limited to 91.94% due to the inherent simplicity of the
model and the sole reliance on lab-setting images. Likewise, Macdonald et al. [58] employed
a custom CNN achieving higher accuracy than Y. Liu et al. [57] but still falling short of the
proposed model’s performance. Notably, Barman et al. [44] achieved a high accuracy of
97.29% with EfficientNetB0. However, this study was focused on a much smaller dataset of
just 7,000 images and included only three crop species and seven classes. While this study
highlights EfficientNetB0’s capability for smaller-scale problems, its limited crop diversity
and dataset size make it unsuitable for generalized crop disease classification tasks. In
contrast, the proposed model was trained on 16 crop species and 36 classes, making it
significantly more versatile and applicable to real-world agricultural scenarios.

Another critical aspect of the proposed model is its dataset composition. Unlike existing
studies that primarily rely on lab-setting images, the proposed model incorporates both real-
world and lab-setting images, making it robust for practical deployment in diverse
agricultural environments. This improvement addresses a critical gap in existing literature,
where models trained solely on lab-controlled datasets may struggle with noisy and variable
conditions encountered in real-world applications.
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From a model design perspective, the proposed MobileNetV2-based architecture strikes an
effective balance between computational efficiency and accuracy. Unlike models like
SqueezeNext or EfficientNetB0, which are designed to minimize parameters and FLOPs at
the cost of performance, the proposed model integrates a lightweight architecture with
advanced training optimizations, enabling it to outperform the existing models. Additionally,
while Tambe et al. [27] also utilized MobileNetV2, their model achieved only 91.98%
accuracy, indicating the significant impact of the proposed model’s tailored optimizations.

The key findings of this study highlight the practicality of employing lightweight CNN
architectures for multi-class crop disease classification, especially in resource-limited
agricultural settings. The model’s ability to process diverse datasets highlights its potential
for real-world applications, such as early disease detection and crop health monitoring. This
can aid farmers and agricultural professionals in timely decision-making and ultimately
contribute to improving crop yields and reducing losses.

4.7 Limitations of the study

While the proposed model achieved high classification accuracy and demonstrated
computational efficiency, certain limitations must be acknowledged. First, although the
dataset combined both lab-controlled and real-field images, it may still be subject to bias due
to uneven representation of some crop-disease classes. The generalizability of the model to
unseen datasets from different geographies, crop varieties, or image acquisition devices
remains to be validated. Second, variations in image resolution, illumination, occlusion, and
natural background clutter were only partially captured in the dataset, which may limit
performance under highly diverse real-world conditions. Third, the study focused on tuning
two key hyperparameters (dropout rate and learning rate), while other hyperparameters (e.g.,
batch size, weight decay) were not explored, leaving open the possibility of further
optimization. Addressing these limitations will be essential for enhancing the applicability of
the model in large-scale agricultural deployments.

5. CONCLUSION AND FUTURE WORK

This study presented an optimized MobileNetV2-based deep learning framework for the
classification of 36 healthy and diseased crop classes across 16 plant species. Through
systematic optimizer benchmarking and Optuna-based hyperparameter tuning, the proposed
model achieved 98.82% accuracy with only 2.3M parameters and 599 MFLOPs, making it
suitable for deployment on edge devices in resource-constrained agricultural settings. By
integrating both lab-controlled and real-field images, the model demonstrated improved
generalizability compared to prior lightweight approaches.

Looking ahead, three promising research directions emerge. First, expanding the dataset to
include more crop-disease classes from diverse geographies would strengthen robustness and
ensure wider applicability. Second, deploying the model in real-time scenarios, such as
smartphone applications or IoT-enabled systems would provide practical validation of its
field readiness. Third, future work may explore advanced efficiency techniques such as
pruning, quantization, or lightweight ensemble learning to further enhance performance
without increasing computational cost.

This study advances the technical frontier of lightweight deep learning for crop disease
classification as well as holds broader societal relevance. By enabling early and accurate
disease detection in real-world conditions, it contributes to achieving Sustainable
Development Goal 2 (Zero Hunger) through improved food security and sustainable
agricultural practices.
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